Introducing nonlinear gauge transformations in a family of nonlinear Schrodinger equations

被引:100
作者
Doebner, HD
Goldin, GA
机构
[1] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[2] RUTGERS STATE UNIV, DEPT PHYS, NEW BRUNSWICK, NJ 08903 USA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevA.54.3764
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In earlier work we proposed a family of nonlinear time-evolution equations for quantum mechanics associated with certain unitary group representations [Doebner and Goldin, Phys. Lett. A 162, 397 (1992); J. Phys. A 27, 1771 (1994)]. Such nonlinear Schrodinger equations are expected to describe irreversible and dissipative quantum systems. Here we introduce and justify physically the group of nonlinear gauge transformations necessary to interpret our equations. We determine the parameters that are actually gauge invariant and describe some of their properties. Our conclusions contradict, at least in part, the view that any nonlinearity in quantum mechanics leads to unphysical predictions. We also show how time-dependent nonlinear gauge transformations connect our equations to those proposed by Kostin [J. Chem. Phys. 57, 3589 (1972)] and by Bialynicki-Birula and Mycielski [AM. Phys. 100, 62 (1976)]. We believe our approach to be a fundamental generalization of the usual notions about gauge transformations in quantum mechanics.
引用
收藏
页码:3764 / 3771
页数:8
相关论文
共 54 条
[1]  
ANGERMANN B, 1983, LECT NOTES MATH, V1037, P171
[2]   ON A CLASS OF HOMOGENEOUS NONLINEAR SCHRODINGER-EQUATIONS [J].
AUBERSON, G ;
SABATIER, PC .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4028-4041
[3]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[4]   TEST OF THE LINEARITY OF QUANTUM-MECHANICS BY RF SPECTROSCOPY OF THE BE-9+ GROUND-STATE [J].
BOLLINGER, JJ ;
HEINZEN, DJ ;
ITANO, WM ;
GILBERT, SL ;
WINELAND, DJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (10) :1031-1034
[5]   Nonlinear Schrodinger equation and two-level atoms [J].
Czachor, M .
PHYSICAL REVIEW A, 1996, 53 (03) :1310-1315
[6]   CURRENTS AS COORDINATES FOR HADRONS [J].
DASHEN, RF ;
SHARP, DH .
PHYSICAL REVIEW, 1968, 165 (05) :1857-&
[7]   UNIFORM NONLINEAR EVOLUTION-EQUATIONS FOR PURE AND MIXED QUANTUM STATES [J].
DODONOV, VV ;
MIZRAHI, SS .
ANNALS OF PHYSICS, 1995, 237 (02) :226-268
[8]   GENERALIZED NONLINEAR DOEBNER-GOLDIN SCHRODINGER-EQUATION AND THE RELAXATION OF QUANTUM-SYSTEMS [J].
DODONOV, VV ;
MIZRAHI, SS .
PHYSICA A, 1995, 214 (04) :619-628
[9]   DOEBNER-GOLDIN NONLINEAR MODEL OF QUANTUM-MECHANICS FOR A DAMPED OSCILLATOR IN A MAGNETIC-FIELD [J].
DODONOV, VV ;
MIZRAHI, SS .
PHYSICS LETTERS A, 1993, 181 (02) :129-134
[10]  
Doebner HD, 1995, QUANTIZATION, COHERENT STATES, AND COMPLEX STRUCTURES, P27