POSITIVE GROUND STATE SOLUTIONS OF ASYMPTOTICALLY LINEAR SCHRODINGER-POISSON SYSTEMS

被引:0
作者
Ma, Chao [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-poisson system; asymptotically linear; ground state solution; variational methods; EQUATIONS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Poisson system: {-Delta u + V(x)u + lambda phi(x)u = q(x) f (u), in R-3, -Delta phi = lambda u(2), in R-3, where V(x) is a real function on R-3 and the parameter A is an element of (0, +infinity), the nonlinearity f (s)/s tends to 0 and l is an element of (0, +infinity), respectively, as s -> 0(+) and s -> +infinity. Under appropriate assumptions on V, q and f, we give the existence of a positive ground state solution resolved by variational methods, which depends on the parameter lambda.
引用
收藏
页码:731 / 744
页数:14
相关论文
共 31 条
[1]   Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Soares Souto, Marco Aurelio ;
Soares, Sergio H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :584-592
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]  
[Anonymous], 2000, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
[4]  
[Anonymous], 1996, Minimax Theorems, DOI DOI 10.1007/978
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[7]  
Benci V., 1998, Top. Meth. Nonlinear Anal, V11, P283, DOI [https://doi.org/10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[8]   Embedding theorems and existence results for nonlinear Schrodinger-Poisson systems with unbounded and vanishing potentials [J].
Bonheure, Denis ;
Mercuri, Carlo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :1056-1085
[9]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[10]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934