A relaxed projection method for solving multiobjective optimization problems

被引:19
作者
Brito, A. S. [1 ]
Cruz Neto, J. X. [2 ]
Santos, P. S. M. [3 ]
Souza, S. S. [3 ]
机构
[1] DM Univ Estadual Piaui, Teresina, Brazil
[2] Univ Fed Piaui, DM, BR-64049500 Teresina, PI, Brazil
[3] Univ Fed Piaui, CMRV, BR-64049500 Parnaiba, PI, Brazil
关键词
Multiple objective programming; Pareto optimality; Projected subgradient method; STEEPEST DESCENT METHOD; VECTOR OPTIMIZATION; VARIATIONAL-INEQUALITIES; MULTICRITERIA OPTIMIZATION; SUBGRADIENT METHOD; PROXIMAL METHODS; CONVEX-PROGRAMS; ALGORITHM; NONSMOOTH; CONVERGENCE;
D O I
10.1016/j.ejor.2016.05.026
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose an algorithm for solving multiobjective minimization problems on nonempty closed convex subsets of the Euclidean space. The proposed method combines a reflection technique for obtaining a feasible point with a projected subgradient method. Under suitable assumptions, we show that the sequence generated using this method converges to a Pareto optimal point of the problem. We also present some numerical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 32 条
[21]   Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization [J].
Mainge, Paul-Emile .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :899-912
[22]  
Miettinen K., 1999, Nonlinear multiobjective optimization, V12
[23]  
Pappalardo M, 2008, SPRINGER SER OPTIM A, V17, P517
[24]  
Polyak Boris T., 1969, USSR COMP MATH MATH, V9, P14, DOI [10.1016/0041-5553(69)90061-5, DOI 10.1016/0041-5553(69)90061-5]
[25]   A new algorithm for linearly constrained c-convex vector optimization with a supply chain network risk application [J].
Qu, Shaojian ;
Goh, Mark ;
Ji, Ying ;
De Souza, Robert .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 247 (02) :359-365
[26]   Nonsmooth multiobjective programming with quasi-Newton methods [J].
Qu, Shaojian ;
Liu, Chen ;
Goh, Mark ;
Li, Yijun ;
Ji, Ying .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) :503-510
[27]  
Rockafellar R. T., 1970, CONVEX ANAL, V36
[28]  
ROSS GT, 1980, EUR J OPER RES, V4, P307, DOI 10.1016/0377-2217(80)90142-3
[29]  
Santos P, 2011, COMPUT APPL MATH, V30, P91, DOI 10.1590/S1807-03022011000100005
[30]  
Shor N. Z., 1985, MINIMIZATION ALGORIT