A relaxed projection method for solving multiobjective optimization problems

被引:19
作者
Brito, A. S. [1 ]
Cruz Neto, J. X. [2 ]
Santos, P. S. M. [3 ]
Souza, S. S. [3 ]
机构
[1] DM Univ Estadual Piaui, Teresina, Brazil
[2] Univ Fed Piaui, DM, BR-64049500 Teresina, PI, Brazil
[3] Univ Fed Piaui, CMRV, BR-64049500 Parnaiba, PI, Brazil
关键词
Multiple objective programming; Pareto optimality; Projected subgradient method; STEEPEST DESCENT METHOD; VECTOR OPTIMIZATION; VARIATIONAL-INEQUALITIES; MULTICRITERIA OPTIMIZATION; SUBGRADIENT METHOD; PROXIMAL METHODS; CONVEX-PROGRAMS; ALGORITHM; NONSMOOTH; CONVERGENCE;
D O I
10.1016/j.ejor.2016.05.026
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose an algorithm for solving multiobjective minimization problems on nonempty closed convex subsets of the Euclidean space. The proposed method combines a reflection technique for obtaining a feasible point with a projected subgradient method. Under suitable assumptions, we show that the sequence generated using this method converges to a Pareto optimal point of the problem. We also present some numerical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 32 条
[11]   A steepest descent method for vector optimization [J].
Drummond, LMG ;
Svaiter, BF .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (02) :395-414
[12]   A projected gradient method for vector optimization problems [J].
Drummond, LMG ;
Iusem, AN .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 28 (01) :5-29
[13]   Steepest descent methods for multicriteria optimization [J].
Fliege, J ;
Svaiter, BF .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (03) :479-494
[14]  
Fliege J., 2000, SIAM J OPTIMIZ, V20, P602
[15]  
Fukuda E. H., 2012, COMPUTATIONAL OPTIMI, V54, P473
[16]   ON THE CONVERGENCE OF A CLASS OF OUTER APPROXIMATION ALGORITHMS FOR CONVEX-PROGRAMS [J].
FUKUSHIMA, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (02) :147-156
[17]   AN OUTER APPROXIMATION ALGORITHM FOR SOLVING GENERAL CONVEX-PROGRAMS [J].
FUKUSHIMA, M .
OPERATIONS RESEARCH, 1983, 31 (01) :101-113
[18]   A RELAXED PROJECTION METHOD FOR VARIATIONAL-INEQUALITIES [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :58-70
[19]   A combined relaxation method for variational inequalities with nonlinear constraints [J].
Konnov, IV .
MATHEMATICAL PROGRAMMING, 1998, 80 (02) :239-252
[20]  
Luc D.T., 1989, Theory of vector optimization