Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

被引:206
|
作者
Barth, Andrea [1 ]
Schwab, Christoph [1 ]
Zollinger, Nathaniel [1 ]
机构
[1] ETH Zentrum, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; COLLOCATION METHOD; CONSERVATIVE TRANSPORT; ADDITIVE NOISE; SIMULATION; APPROXIMATION; SPDES; FLOW;
D O I
10.1007/s00211-011-0377-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.
引用
收藏
页码:123 / 161
页数:39
相关论文
共 50 条
  • [1] Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients
    Li, Jingshi
    Wang, Xiaoshen
    Zhang, Kai
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 181 - 194
  • [2] MULTILEVEL MONTE CARLO FINITE ELEMENT METHODS FOR STOCHASTIC ELLIPTIC VARIATIONAL INEQUALITIES
    Kornhuber, Ralf
    Schwab, Christoph
    Wolf, Maren-Wanda
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1243 - 1268
  • [3] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [4] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1033 - 1070
  • [5] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [6] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [7] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [8] Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients
    Kazashi, Yoshihito
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) : 1563 - 1593
  • [9] ON THE ACCELERATION OF THE MULTI-LEVEL MONTE CARLO METHOD
    Debrabant, Kristian
    Roessler, Andreas
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 307 - 322
  • [10] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Longo, Marcello
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)