A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
[41]   Prediction of Wind Speed Using Real Data: An analysis of Statistical Machine Learning Techniques [J].
Ali, K. M. E. ;
Hassan, M. Z. ;
Ali, A. B. M. Shawkat ;
Kumar, Jashnil .
2017 4TH ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWCONCSE 2017), 2017, :259-264
[42]   Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data [J].
Zhen, Yinqing ;
Yan, Qingyun .
REMOTE SENSING, 2023, 15 (12)
[43]   SOIL MOISTURE AND VEGETATION HEIGHT RETRIEVAL USING GNSS-R TECHNIQUES [J].
Rodriguez-Alvarez, N. ;
Monerris, A. ;
Bosch-Lluis, X. ;
Camps, A. ;
Vall-Llossera, M. ;
Marchan-Hernandez, J. F. ;
Ramos-Perez, I. ;
Valencia, E. ;
Martinez-Fernandez, J. ;
Sanchez-Martin, N. ;
Baroncini-Turricchia, G. ;
Perez-Gutierrez, C. .
2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, :2171-+
[44]   NOVEL GNSS-R METHODS FOR FREEZE/THAW SURFACE STATE RETRIEVAL [J].
Carreno-Luengo, H. ;
Ruf, C. S. ;
Gleason, S. ;
Russel, A. ;
Roy, A. ;
Salmabadi, H. .
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, :835-838
[45]   TOPOGRAPHIC PROFILE RETRIEVAL USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE [J].
Rodriguez-Alvarez, N. ;
Marchan-Hernandez, J. F. ;
Camps, A. ;
Bosch-Lluis, X. ;
Valencia, E. ;
Ramos-Perez, I. ;
Vall-Llossera, M. ;
Monerris, A. ;
Martinez-Fernandez, J. ;
Perez-Gutierrez, C. ;
Baroncini-Turricchia, G. ;
Sanchez-Martin, N. ;
Nieto, J. M. .
2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, :1722-+
[46]   The retrieval model of shore-based GNSS-R code altimetry [J].
Ning, Baojiao ;
Wang, Nazi ;
Jing, Lili ;
Gao, Fan ;
Kong, Yahui ;
He, Yunqiao .
Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2025, 51 (04) :1395-1403
[47]   SOIL MOISTURE RETRIEVAL USING THE FMPL-2/FSSCAT GNSS-R AND MICROWAVE RADIOMETRY DATA [J].
Munoz-Martin, J. F. ;
Llaveria, D. ;
Herbert, C. ;
Pablos, M. ;
Camps, A. .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :7638-7641
[48]   Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models [J].
Zhou, Zhenxiong ;
Duan, Boheng ;
Ren, Kaijun ;
Ni, Weicheng ;
Cao, Ruixin .
REMOTE SENSING, 2024, 16 (18)
[49]   Spatial interpolation based on previously-observed behavior: a framework for interpolating spaceborne GNSS-R data from CYGNSS [J].
Chew, Clara .
JOURNAL OF SPATIAL SCIENCE, 2023, 68 (01) :155-168
[50]   A Method of Spaceborne GNSS-R Sea Surface Wind Direction Inversion [J].
Gao H. ;
Bai Z.-G. ;
Fan D.-D. .
Bai, Zhao-Guang (13910027870@139.com), 2020, China Spaceflight Society (41) :1473-1480