A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
[41]   Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models [J].
Zhou, Zhenxiong ;
Duan, Boheng ;
Ren, Kaijun ;
Ni, Weicheng ;
Cao, Ruixin .
REMOTE SENSING, 2024, 16 (18)
[42]   Spatial interpolation based on previously-observed behavior: a framework for interpolating spaceborne GNSS-R data from CYGNSS [J].
Chew, Clara .
JOURNAL OF SPATIAL SCIENCE, 2023, 68 (01) :155-168
[43]   A Method of Spaceborne GNSS-R Sea Surface Wind Direction Inversion [J].
Gao H. ;
Bai Z.-G. ;
Fan D.-D. .
Bai, Zhao-Guang (13910027870@139.com), 2020, China Spaceflight Society (41) :1473-1480
[44]   Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSS-R [J].
Zhang S. ;
Guo Q. ;
Ma Z. ;
Liu Q. ;
Hu S. ;
Zhou X. ;
Zhao H. .
Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01) :15-26
[45]   DETECTION & SEPARATION OF COHERENT REFLECTIONS IN GNSS-R MEASUREMENTS USING CYGNSS DATA [J].
Loria, Eric ;
O'Brien, Andrew ;
Gupta, Inder J. .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :3995-3998
[46]   DETECTION OF COHERENT GNSS-R MEASUREMENTS USING A SUPPORT VECTOR MACHINE [J].
Wang, Yang ;
Liu, Yunxiang ;
Roesler, Carolyn ;
Morton, Y. Jade .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :6210-6213
[47]   Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development Opportunities, and Challenges [J].
Wu, Xuerui ;
Ma, Wenxiao ;
Xia, Junming ;
Bai, Weihua ;
Jin, Shuanggen ;
Calabia, Andres .
REMOTE SENSING, 2021, 13 (01) :1-24
[48]   GNSS-R snow depth retrieval algorithm based on PSO-LSTM [J].
Hu, Yuan ;
Qu, Wei ;
Liu, Wei ;
Yuan, Xintai .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
[49]   PERFORMANCES OF GNSS-R GLORI DATA OVER LANDE FOREST [J].
Zribi, Mehrez ;
Guyon, Dominique ;
Motte, Erwan ;
Wigneron, Jean Pierre ;
Baghdadi, Nicolas ;
Pierdicca, Nazzareno ;
Fanise, Pascal .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :2039-2042
[50]   REAL-VALUED SOLUTIONS TO AN INVERSE FRESNEL PROBLEM IN GNSS-R [J].
Savi, Patrizia ;
Milani, Albert J. .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :3327-3330