A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [21] Machine learning-based global soil moisture estimation using GNSS-R
    Senyurek, Volkan
    Lei, Fangni
    Gurbuz, Ali C.
    Kurum, Mehmet
    Moorhead, Robert
    SOUTHEASTCON 2022, 2022, : 434 - 435
  • [22] Improving GNSS-R Ocean Wind Speed Retrieval for the BF-1 Mission Using Satellite Platform Attitude Measurements
    Chen, Chenxin
    Wang, Xiaoyu
    Bian, Zhao
    Wei, Haoyun
    Fan, Dongdong
    Bai, Zhaoguang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2121 - 2133
  • [23] Evaluation of Spaceborne GNSS-R Retrieved Ocean Surface Wind Speed with Multiple Datasets
    Dong, Zhounan
    Jin, Shuanggen
    REMOTE SENSING, 2019, 11 (23)
  • [24] GNSS-R sea surface wind speed inversion based on BP neural network
    Gao H.
    Bai Z.
    Fan D.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2019, 40 (12):
  • [25] A New GNSS-R Altimetry Algorithm Based on Machine Learning Fusion Model and Feature Optimization to Improve the Precision of Sea Surface Height Retrieval
    Wang, Qiang
    Zheng, Wei
    Wu, Fan
    Xu, Aigong
    Zhu, Huizhong
    Liu, Zongqiang
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [26] Improving GNSS-R Sea Surface Wind Speed Retrieval from FY-3E Satellite Using Multi-task Learning and Physical Information
    Zhou, Zhenxiong
    Duan, Boheng
    Ren, Kaijun
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 357 - 369
  • [27] EVOLVING OCEAN MONITORING WITH GNSS-R: PROMISES IN SURFACE WIND SPEED AND PROSPECTS FOR RAIN DETECTION
    Asgarimehr, M.
    Zavorotny, V.
    Zhelavskaya, I.
    Foti, G.
    Wickert, J.
    Reich, S.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8692 - 8695
  • [28] The Study of Soil Moisture Retrieval Algorithm from GNSS-R
    Mao Kebiao
    Zhang Mengyang
    Wang Jianming
    Tang Huajun
    Zhou Qingbo
    2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 1, PROCEEDINGS, 2009, : 438 - +
  • [29] Static Soil Moisture Retrieval Measurements Based on GNSS-R
    Tengda Pei
    Yuekun Pei
    2017 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS AND COMMUNICATIONS (ICCSC 2017), 2017, : 29 - 33
  • [30] MF-ANN: A Novel Artificial Neural Network-Based Method for Ocean Wind Speed Retrieval on Spaceborne GNSS-R Signal
    Xie, Heng
    Cheng, Xing
    He, Shanbao
    Li, Yujie
    Pang, Jingjing
    Li, Shuaishuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61