A MACHINE LEARNING FRAMEWORK FOR REAL DATA GNSS-R WIND SPEED RETRIEVAL

被引:0
|
作者
Liu, Yunxiang [1 ]
Wang, Jun [1 ]
Collett, Ian [1 ]
Morton, Y. Jade [1 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
CYGNSS; GNSS-R; wind speed retrieval; machine learning; feature engineering; multi-hidden layer neural network;
D O I
10.1109/igarss.2019.8899792
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a machine learning framework to conduct GNSS-R wind speed retrieval. While the conventional method tries to retrieve wind speed using a single scalar value, the proposed framework is capable of incorporating and employing more features such as DDM and incidence angle. The results show that the proposed framework outperforms the conventional retrieval method with a notable margin.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [1] Improved Ocean Wind Speed Retrieval Using GNSS-R, Stare Processing, and Machine Learning
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6775 - 6778
  • [2] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    REMOTE SENSING, 2022, 14 (14)
  • [3] Stare Processing Improves GNSS-R, Machine Learning-Based Ocean Wind Speed Retrieval
    Anderson, Sophie G.
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4080 - 4083
  • [4] Multimodal Deep Learning for Heterogeneous GNSS-R Data Fusion and Ocean Wind Speed Retrieval
    Chu, Xiaohan
    He, Jie
    Song, Hongqing
    Qi, Yue
    Sun, Yueqiang
    Bai, Weihua
    Li, Wei
    Wu, Qiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5971 - 5981
  • [5] Application of Neural Network to GNSS-R Wind Speed Retrieval
    Liu, Yunxiang
    Collett, Ian
    Morton, Y. Jade
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9756 - 9766
  • [6] A GNSS-R Geophysical Model Function: Machine Learning for Wind Speed Retrievals
    Asgarimehr, Milad
    Zhelavskaya, Irina
    Foti, Giuseppe
    Reich, Sebastian
    Wickert, Jens
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1333 - 1337
  • [7] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Li, Zheng
    Guo, Fei
    Chen, Fade
    Zhang, Zhiyu
    Zhang, Xiaohong
    SATELLITE NAVIGATION, 2023, 4 (01):
  • [8] Wind speed retrieval using GNSS-R technique with geographic partitioning
    Zheng Li
    Fei Guo
    Fade Chen
    Zhiyu Zhang
    Xiaohong Zhang
    Satellite Navigation, 2023, 4
  • [9] SOIL MOISTURE RETRIEVAL USING GNSS-R DATA
    Zribi, Mehrez
    Huc, Mireille
    Pellarin, Thierry
    Baghdadi, Nicolas
    Pierdicca, Nazzareno
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 172 - 175
  • [10] Desert Roughness Retrieval Using CYGNSS GNSS-R Data
    Stilla, Donato
    Zribi, Mehrez
    Pierdicca, Nazzareno
    Baghdadi, Nicolas
    Huc, Mireille
    REMOTE SENSING, 2020, 12 (04)