Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage

被引:54
作者
Liu, Huilong [1 ,2 ]
Zheng, Yixin [1 ,2 ]
Moon, Kyoung-Sik [3 ]
Chen, Yun [1 ,2 ]
Shi, Dachuang [1 ,2 ]
Chen, Xin [1 ,2 ]
Wong, Ching-Ping [3 ]
机构
[1] Guangdong Univ Technol, State Key Lab Precis Elect Mfg Technol & Equipmen, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, 711 Ferst Dr, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Microporous graphene film; Laser induction & activation; Ultrafast ultraviolet laser; Hierarchical porous structure; Micro-supercapacitors; SOLID-STATE MICROSUPERCAPACITORS; HIGH-PERFORMANCE; MICRO-SUPERCAPACITORS; POROUS CARBON; FEMTOSECOND LASER; PHENOLIC RESIN; OXIDE; ELECTRODES; FACILE; DENSITY;
D O I
10.1016/j.nanoen.2021.106902
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microporous graphene-based (MPG) films have attracted tremendous attention in micro-energy storage devices due to their unique characteristics of high specific surface area (SSA), high flexibility and high conductivity. However, current fabrication technologies generally provide overall activation in the form of powder in the bulky tube furnace, and multi-stepped thin film forming process, hurdling their practical utilizations that require efficient, cost-effective and controllable methods for large-area MPG films. Herein, a one-step and scalable laser induction & activation technique is reported for in situ fabrication of decimeter-level few-layer MPG films by utilizing ultrafast ultraviolet laser as a mobile heat source acting on microstructured polyimide film coated with KOH in air, which enable directly regulating the activation area on a flexible substrate. The resulting laserinduced and activated graphene (LIAG) films have interconnected hierarchical porous structures containing ultra- (0.5-0.8 nm) and super-micropores (similar to 1.2 nm), high SSA (>1300 m(2) g(-1)), small amount of doped potassium (similar to 0.50 wt%), and super-hydrophilicity (maximum droplet spreading velocity reaches 424.7 mm s(-1)). With the well-balanced properties of SSA, heteroatom doping, bulk density, and crystalline size, the LIAG microsupercapacitors with interdigital electrodes of 35 mn width gap achieve a maximum areal capacitance of 128.4 mF cm(-2), which outperforms state-of-the-art laser-processed carbon-based micro-supercapacitors. Additionally, it achieves almost the highest comprehensive evaluation considering processing precision, efficiency, cost and environmental friendliness. The facile, efficient, binder-free fabricability and roll-to-roll process compatibility would provide a rapid route for high-performance flexible energy storage devices.
引用
收藏
页数:14
相关论文
共 97 条
[11]   Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors [J].
Chen, Huqiang ;
Chen, Songbo ;
Zhang, Yujin ;
Ren, Hao ;
Hu, Xinjun ;
Bai, Yongxiao .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) :56319-56329
[12]   UV Laser-Induced Polyimide-to-Graphene Conversion: Modeling, Fabrication, and Application [J].
Chen, Yun ;
Long, Junyu ;
Zhou, Shuang ;
Shi, Dachuang ;
Huang, Yan ;
Chen, Xin ;
Gao, Jian ;
Zhao, Ni ;
Wong, Ching-Ping .
SMALL METHODS, 2019, 3 (10)
[13]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[14]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[15]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[16]   Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors [J].
Gao, Yunfang ;
Zheng, Shuanghao ;
Fu, Hanli ;
Ma, Jiaxin ;
Xu, Xin ;
Guan, Li ;
Wu, Haihua ;
Wu, Zhong-Shuai .
CARBON, 2020, 168 :701-709
[17]   Graphene Aerosol Gel Ink for Printing Micro-Supercapacitors [J].
Gaur, Anand P. S. ;
Xiang, Wenjun ;
Nepal, Arjun ;
Wright, Justin P. ;
Chen, Pingping ;
Nagaraja, Thiba ;
Sigdel, Shusil ;
LaCroix, Brice ;
Sorensen, Christopher M. ;
Das, Suprem R. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) :7632-7641
[18]   Phosphoric acid involved laser induced microporous graphene via proton conducting polybenzimidazole for high-performance micro-supercapacitors [J].
Han, Mingguang ;
He, Meihong ;
Wang, Guantao ;
Luo, Sida .
JOURNAL OF POWER SOURCES, 2021, 514
[19]   Supercapacitors Fabricated via Laser-Induced Carbonization of Biomass-Derived Poly(furfuryl alcohol)/Graphene Oxide Composites [J].
Hawes, Gillian F. ;
Yilman, Dilara ;
Noremberg, Bruno S. ;
Pope, Michael A. .
ACS APPLIED NANO MATERIALS, 2019, 2 (10) :6312-6324
[20]   Laser Irradiation of Electrode Materials for Energy Storage and Conversion [J].
Hu, Han ;
Li, Qiang ;
Li, Linqing ;
Teng, Xiaoling ;
Feng, Zhaoxuan ;
Zhang, Yunlong ;
Wu, Mingbo ;
Qiu, Jieshan .
MATTER, 2020, 3 (01) :95-126