CLUSTER ALGEBRAS AND POISSON GEOMETRY

被引:154
作者
Gekhtman, Michael [1 ]
Shapiro, Michael [2 ,3 ]
Vainshtein, Alek [4 ,5 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] KTH, Inst Matemat, Stockholm, Sweden
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[5] Univ Haifa, Dept Comp Sci, IL-31905 Haifa, Israel
关键词
Cluster algebras; Poisson brackets; toric action; symplectic leaves; real Grassmannians; Sklyanin bracket;
D O I
10.17323/1609-4514-2003-3-3-899-934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of connected components of refined open Bruhat cells in Grassmanians G(k, n) over R.
引用
收藏
页码:899 / 934
页数:36
相关论文
共 14 条
[1]   Double Bruhat cells and total positivity [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :335-380
[2]   The Laurent phenomenon [J].
Fomin, S ;
Zelevinsky, A .
ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (02) :119-144
[3]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[4]   The number of connected components in double Bruhat cells for nonsimply-laced groups [J].
Gekhtman, M ;
Shapiro, M ;
Vainshtein, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :731-739
[5]   PRIMITIVE-IDEALS OF C(Q)[SL(3)] [J].
HODGES, TJ ;
LEVASSEUR, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :581-605
[6]   Factorization dynamics and Coxeter-Toda lattices [J].
Hoffmann, T ;
Kellendonk, J ;
Kutz, N ;
Reshetikhin, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) :297-321
[7]  
Kogan M, 2002, INT MATH RES NOTICES, V2002, P1685
[8]  
Reshetikhin N., PREPRINT
[9]  
Reyman A, 1994, ENCYCL MATH SCI, V16, P116
[10]   Skew-symmetric vanishing lattices and intersections of Schubert cells [J].
Shapiro, B ;
Shapiro, M ;
Vainshtein, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (11) :563-588