Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods

被引:37
作者
Cashman, Thomas J. [1 ]
机构
[1] Univ Lugano, Fac Informat, Lugano, Switzerland
关键词
smoothness analysis; evaluation; rendering approximation; C2; continuity; polar subdivision; PTER framework; B-SPLINE SURFACES; STATIONARY SUBDIVISION; SHAPE CHARACTERIZATION; DEPTH COMPUTATION; CURVATURE; SCHEMES; INTERPOLATION; ALGORITHMS; SMOOTHNESS; MESHES;
D O I
10.1111/j.1467-8659.2011.02083.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why CatmullClark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research.
引用
收藏
页码:42 / 61
页数:20
相关论文
共 137 条
[1]  
Alexa M., 2008, ACM T GRAPHIC, V27, P142
[2]  
[Anonymous], 2005, GPU GEMS
[3]   Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra [J].
Augsdoefer, U. H. ;
Dodgson, N. A. ;
Sabin, M. A. .
COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (03) :177-197
[4]   Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra [J].
Augsdoerfer, U. H. ;
Dodgson, N. A. ;
Sabin, M. A. .
COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (03) :198-211
[5]   Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices [J].
Augsdorfer, U. H. ;
Dodgson, N. A. ;
Sabin, M. A. .
COMPUTER GRAPHICS FORUM, 2006, 25 (03) :263-272
[6]   Subdivision scheme tuning around extraordinary vertices [J].
Barthe, L ;
Kobbelt, L .
COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (06) :561-583
[7]  
Biermann H, 2001, COMP GRAPH, P185, DOI 10.1145/383259.383280
[8]  
Biermann H, 2000, COMP GRAPH, P113, DOI 10.1145/344779.344841
[9]  
Boier-Martin I., 2004, Proceedings of the 2004 Eurographics/ACM SIG- GRAPH symposium on Geometry processing, P155
[10]  
Bolz J., 2002, Proc. Web3D '02, P11