Estimating parameters in the damped exponential model

被引:27
作者
Kannan, N
Kundu, D
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
[2] Univ Texas, Div Math & Stat, San Antonio, TX 78249 USA
关键词
asymptotic covariance; exponential signals; complex normal distribution; least-squares estimators;
D O I
10.1016/S0165-1684(01)00119-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider the problem of estimation of the frequencies and damping factors of exponential signals in the presence of noise. We propose a non-iterative method based on using forward-backward linear prediction and the notion of extended order modeling. In addition to providing estimators of the unknown parameters in the model, the proposed method can be used to specify initial values in any standard minimization algorithm to obtain the least-squares estimators. For the undamped exponential model, it is well known that any estimator is inconsistent under the usual definition of consistency. We redefine the model so that the sampling interval is finite, and prove the consistency and asymptotic normality of the least-squares estimators under this new assumption. It is observed that the dispersion matrix of the least-squares estimators attains the Cramer-Rao bound. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:2343 / 2351
页数:9
相关论文
共 19 条
[1]   EIGENVALUES AND EIGENVECTORS OF SYMMETRIC CENTROSYMMETRIC MATRICES [J].
CANTONI, A ;
BUTLER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) :275-288
[2]   DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST-SQUARES PROBLEMS WHOSE VARIABLES SEPARATE [J].
GOLUB, GH ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :413-432
[3]   MATRIX PENCIL METHOD FOR ESTIMATING PARAMETERS OF EXPONENTIALLY DAMPED UNDAMPED SINUSOIDS IN NOISE [J].
HUA, Y ;
SARKAR, TK .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (05) :814-824
[4]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&
[5]  
Kahn M.H., 1992, J COMPUT GRAPH STAT, V1, P329, DOI [10.2307/1390787, DOI 10.1080/10618600.1992.10474589]
[6]   ON MODIFIED EVLP AND ML METHODS FOR ESTIMATING SUPERIMPOSED EXPONENTIAL SIGNALS [J].
KANNAN, N ;
KUNDU, D .
SIGNAL PROCESSING, 1994, 39 (03) :223-233
[7]  
KANNAN N, 1992, THESIS PENNSYLVANIA
[8]  
Kay SM., 1988, Modern spectral estimation: theory and application
[9]  
Kumaresan R., 1982, THESIS U RHODE ISLAN
[10]  
KUNDU D, 1994, SANKHYA A, V56, P525