Hypergeometric period for a tame polynomial

被引:34
作者
Sabbah, C [1 ]
机构
[1] Ecole Polytech, Ctr Math, CNRS, UMR 7640, F-91128 Palaiseau, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 07期
关键词
D O I
10.1016/S0764-4442(99)80254-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the Gauss-Manin system of differential equations (and its Fourier transform) attached to regular functions satisfying a tameness assumption on a smooth affine variety over C (e.g. tame polynomials on Cn+1). We give a solution to the Birkhoff problem for this system and prove Hedge-type results analogous to those existing for germs of isolated hypersurface singularities. We deduce a formula for the determinant of the "Aomoto complex". (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 21 条
[1]   EXPONENTIAL-SUMS AND NEWTON POLYHEDRA - COHOMOLOGY AND ESTIMATES [J].
ADOLPHSON, A ;
SPERBER, S .
ANNALS OF MATHEMATICS, 1989, 130 (02) :367-406
[2]   MILNOR NUMBERS AND THE TOPOLOGY OF POLYNOMIAL HYPERSURFACES [J].
BROUGHTON, SA .
INVENTIONES MATHEMATICAE, 1988, 92 (02) :217-241
[3]  
Deligne P., 1973, LECT NOTES MATH, V340, P82
[4]  
DOUAI A, 1993, COMPOS MATH, V87, P311
[5]   NEWTON POLYHEDRA AND MILNOR NUMBERS [J].
KOUCHNIRENKO, AG .
INVENTIONES MATHEMATICAE, 1976, 32 (01) :1-31
[6]   FINITE-DIFFERENCE EQUATIONS AND DETERMINANTS OF INTEGRALS OF ALGEBRAIC DIFFERENTIAL FORMS [J].
LOESER, F ;
SABBAH, C .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (03) :458-503
[7]  
Malgrange B., 1975, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, V459, P98
[8]  
NEMETHI A, 1997, MATHAG9805086
[9]  
PHAM F, 1983, ASTERISQUE, P268
[10]  
SABBAH C, 1996, MATHAG9805077