pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites

被引:221
作者
Way, Amanda E. [1 ]
Hsu, Lorraine [1 ]
Shanmuganathan, Kadhiravan [1 ]
Weder, Christoph [2 ]
Rowan, Stuart J. [1 ]
机构
[1] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
[2] Univ Fribourg, Adolphe Merkle Inst, CH-1723 Marly 1, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
TEMPO-MEDIATED OXIDATION; POLYMER NANOCOMPOSITES; MICROCRYSTALLINE CELLULOSE; WHISKERS; WATER; SUSPENSION; DISPERSION; CHEMISTRY; STRENGTH; LIQUID;
D O I
10.1021/mz3003006
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We show that functionalization of the surface of cellulose nanocrystals (CNCs) with either carboxylic acid (CNCCO2H) or amine (CNCNH2) moieties renders the CNCs pH-responsive. At low pH, where the amine groups are protonated, CNCNH2 forms aqueous dispersions in water on account of electrostatic repulsions of the ammonium moieties inhibiting aggregation. However, a transition to hydrogels is observed at higher pH where the CNCNH2 are neutral and the attractive forces based on hydrogen bonding dominate. The opposite behavior is observed for CNCCO2H, which are dispersible at high pH and form gels in an acidic environment. We further show that these pH-responsive CNCs can be incorporated into a poly(vinyl acetate) matrix to yield mechanically adaptive pH-responsive nanocomposite films.
引用
收藏
页码:1001 / 1006
页数:6
相关论文
共 50 条
  • [31] Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites
    Davood Bagheriasl
    Pierre J. Carreau
    Bernard Riedl
    Charles Dubois
    Wadood Y. Hamad
    Cellulose, 2016, 23 : 1885 - 1897
  • [32] pH-Responsive and Recyclable Hydrogels for Gas Releasing and Scavenging
    Zhou, Xiaozhuang
    Kandalai, Shruthi
    Hossain, Farzana
    Zhang, Nan
    Li, Huapeng
    Zheng, Qingfei
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (08)
  • [33] Intelligent Cellulose Nanofibers with Excellent Biocompatibility Enable Sustained Antibacterial and Drug Release via a pH-Responsive Mechanism
    He, Hui
    Cheng, Meixiao
    Liang, Yuting
    Zhu, Hongxiang
    Sun, Yupei
    Dong, Die
    Wang, Shuangfei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (11) : 3518 - 3527
  • [34] Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology
    Zhang, Jinlong
    Zhang, Xiuqiang
    Li, Mei-Chun
    Dong, Ju
    Lee, Sunyoung
    Cheng, H. N.
    Lei, Tingzhou
    Wu, Qinglin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 130 : 685 - 694
  • [35] Polyaminoazide mixtures for the synthesis of pH-responsive calixarene nanosponges
    Di Vincenzo, Antonella
    Piccionello, Antonio Palumbo
    Spinella, Alberto
    Martino, Delia Chillura
    Russo, Marco
    Lo Meo, Paolo
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2019, 15 : 633 - 641
  • [36] pH-responsive host-guest polymerization and blending
    Masseroni, Daniele
    Rampazzo, Enrico
    Rastrelli, Federico
    Orsi, Davide
    Ricci, Lucia
    Ruggeri, Giacomo
    Dalcanale, Enrico
    RSC ADVANCES, 2015, 5 (15): : 11334 - 11342
  • [37] Synthesis and optical properties of pH-responsive conjugated polyampholytes
    Nag, Okhil Kumar
    Jeong, Ji-Eun
    Thanh Luan Nguyen
    Woo, Han Young
    MACROMOLECULAR RESEARCH, 2015, 23 (05) : 457 - 465
  • [38] Cellulose nanocrystal functionalized aramid nanofiber reinforced epoxy nanocomposites with high strength and toughness
    Jung, Jaehyun
    Sodano, Henry A.
    NANOTECHNOLOGY, 2023, 34 (24)
  • [39] Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels
    Rao, Abhinav
    Divoux, Thibaut
    McKinley, Gareth H.
    Hart, A. John
    SOFT MATTER, 2019, 15 (21) : 4401 - 4412
  • [40] Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior
    Wang, Lin
    Du, Yu
    Yuan, Yi
    Mu, Ruo-Jun
    Gong, Jingni
    Ni, Yongsheng
    Pang, Jie
    Wu, Chunhua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 113 : 285 - 293