PHEX, FGF23, DMP1 and beyond

被引:64
作者
Strom, Tim M. [1 ,2 ]
Juppner, Harald [3 ,4 ,5 ,6 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Human Genet, German Res Ctr Environm Hlth, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Klinikum Rechts Isar, Inst Human Genet, D-8000 Munich, Germany
[3] Massachusetts Gen Hosp, Endocrine Unit, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Pediat Nephrol Unit, Boston, MA 02114 USA
[5] Harvard Univ, Sch Med, Endocrine Unit, Boston, MA USA
[6] Harvard Univ, Sch Med, Pediat Nephrol Unit, Boston, MA USA
关键词
dentin matrix protein 1; fibroblast growth factor 23; PHEX; phosphate homeostasis;
D O I
10.1097/MNH.0b013e3282fd6e5b
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review We aim to review the biological properties of novel molecules that are members of a kidney-bone axis involved in the regulation of phosphate homeostasis. In addition, we describe how an improved knowledge of the mechanisms leading to changes in renal phosphate handling may lead to the development of novel therapeutic approaches. Recent findings As yet, eight genes involved in the regulation of phosphate homeostasis have been identified through genetic studies. A key protein in this regulatory pathway is FGF23, which is made by osteocytes and activates renal KLOTHO/FGFR1 receptor heterodimers to inhibit renal phosphate reabsorption and 1,25-dihydroxyvitamin D synthesis. Gain-of-function mutations in FGF23, which render the hormone resistant to proteolytic cleavage, lead to increased phosphaturic activity. Furthermore, inactivating mutations in DMP1 and PHEX increase, through yet unknown mechanisms, FGF23 synthesis and thus enhance renal phosphate excretion. In contrast, loss-of-function mutations in FGF23 and KLOTHO, and abnormal O-glycosylation of FGF23 because of GALNT3 mutations, lead to diminished phosphate excretion. Extremely high levels of FGF23 are observed in chronic renal failure, which may contribute to the development of renal osteodystrophy. Summary The analysis of rare genetic disorders affecting phosphate homeostasis led to the identification of several proteins that are essential for the renal regulation of phosphate homeostasis, although it is not yet completely understood how these proteins interact, and additional proteins are likely to contribute to these regulatory events.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 72 条
[1]   MEPE, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone [J].
Argiro, L ;
Desbarats, M ;
Glorieux, FH ;
Ecarot, B .
GENOMICS, 2001, 74 (03) :342-351
[2]   Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders [J].
Bai, XY ;
Miao, DS ;
Li, JR ;
Goltzman, D ;
Karaplis, AC .
ENDOCRINOLOGY, 2004, 145 (11) :5269-5279
[3]   The parathyroid is a target organ for FGF23 in rats [J].
Ben-Dov, Iddo Z. ;
Galitzer, Hillel ;
Lavi-Moshayoff, Vardit ;
Goetz, Regina ;
Kuro-o, Makoto ;
Mohammadi, Moosa ;
Sirkis, Roy ;
Naveh-Many, Tally ;
Silver, Justin .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (12) :4003-4008
[4]   An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia [J].
Benet-Pagès, A ;
Orlik, P ;
Strom, TM ;
Lorenz-Depiereux, B .
HUMAN MOLECULAR GENETICS, 2005, 14 (03) :385-390
[5]   FGF23 is processed by proprotein convertases but not by PHEX [J].
Beret-Pagès, A ;
Lorenz-Depiereux, B ;
Zischka, H ;
White, KE ;
Econs, MJ ;
Strom, TM .
BONE, 2004, 35 (02) :455-462
[6]   SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis [J].
Bergwitz, C ;
Roslin, NM ;
Tieder, M ;
Loredo-Osti, JC ;
Bastepe, M ;
Abu-Zahra, H ;
Frappier, D ;
Burkett, K ;
Carpenter, O ;
Anderson, D ;
Garabédian, M ;
Sermet, I ;
Fujiwara, TM ;
Morgan, K ;
Tenenhouse, HS ;
Jüppner, H .
AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 78 (02) :179-192
[7]   Characterization of PHEX endopeptidase catalytic activity:: identification of parathyroid-hormone-related peptide107-139 as a substrate and osteocalcin, PPi and phosphate as inhibitors [J].
Boileau, G ;
Tenenhouse, HS ;
DesGroseillers, L ;
Crine, P .
BIOCHEMICAL JOURNAL, 2001, 355 (03) :707-713
[8]   FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate [J].
Bowe, AE ;
Finnegan, R ;
de Beur, SMJ ;
Cho, J ;
Levine, MA ;
Kumar, R ;
Schiavi, SC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 284 (04) :977-981
[9]   Human recombinant endopeptidase PHEX has a strict S1′ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein [J].
Campos, M ;
Couture, C ;
Hirata, IY ;
Juliano, MA ;
Loisel, TP ;
Crine, P ;
Juliano, L ;
Boileau, G ;
Carmona, AK .
BIOCHEMICAL JOURNAL, 2003, 373 :271-279
[10]   Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase [J].
Cao, J ;
Rehemtulla, A ;
Pavlaki, M ;
Kozarekar, P ;
Chiarelli, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (12) :10974-10980