Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices

被引:26
作者
Zohrabi, Mo [1 ]
Cormack, Robert H. [1 ]
Mccullough, Connor [2 ]
Supekar, Omkar D. [3 ]
Gibson, Emily A. [2 ]
Bright, Victor M. [3 ]
Gopinath, Juliet T. [1 ,4 ]
机构
[1] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Bioengn, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
VARIABLE-FOCUS LENS; ADAPTIVE-OPTICS; HUMAN EYE; FLUORESCENCE MICROSCOPY; MENISCUS SHAPE; LIQUID LENSES; PERFORMANCE; SYSTEMS; IMPROVEMENT; SIMULATION;
D O I
10.1364/OE.25.031451
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm. (C) 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:31451 / 31461
页数:11
相关论文
共 42 条
[1]   Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy [J].
Albert, O ;
Sherman, L ;
Mourou, G ;
Norris, TB ;
Vdovin, G .
OPTICS LETTERS, 2000, 25 (01) :52-54
[2]  
Allegra Mascaro A.L., 2010, FRONT NEUROENERGETIC, V2, P21, DOI DOI 10.3389/FNENE.2010.00021
[3]   Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates [J].
Botcherby, Edward J. ;
Smith, Christopher W. ;
Kohl, Michael M. ;
Debarre, Delphine ;
Booth, Martin J. ;
Juskaitis, Rimas ;
Paulsen, Ole ;
Wilson, Tony .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (08) :2919-2924
[4]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[5]   Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium [J].
Dong, CY ;
Koenig, K ;
So, P .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :450-459
[6]   FIRST-ORDER PERFORMANCE EVALUATION OF ADAPTIVE-OPTICS SYSTEMS FOR ATMOSPHERIC-TURBULENCE COMPENSATION IN EXTENDED-FIELD-OF-VIEW ASTRONOMICAL TELESCOPES [J].
ELLERBROEK, BL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (02) :783-805
[7]  
Finn R., 1986, Equilibrium Capillary Surfaces, Die Grundlehren der mathematischen Wissenschaften, V284
[8]   Adaptive optics for deeper imaging of biological samples [J].
Girkin, John M. ;
Poland, Simon ;
Wright, Amanda J. .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (01) :106-110
[9]   Adaptive Optics Retinal Imaging: Emerging Clinical Applications [J].
Godara, Pooja ;
Dubis, Adam M. ;
Roorda, Austin ;
Duncan, Jacque L. ;
Carroll, Joseph .
OPTOMETRY AND VISION SCIENCE, 2010, 87 (12) :930-941
[10]   Compensated telescope system with programmable diffractive optic [J].
Gruneisen, MT ;
Dymale, RC ;
Rotge, JR ;
DeSandre, LF ;
Lubin, DL .
OPTICAL ENGINEERING, 2005, 44 (02) :1-9