Selectivity in trace gas sensing: recent developments, challenges, and future perspectives

被引:42
作者
Barik, Puspendu [1 ]
Pradhan, Manik [1 ,2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Tech Res Ctr, JD Block,Sect 3, Kolkata 700106, India
[2] SN Bose Natl Ctr Basic Sci, Dept Chem Biol & Macromol Sci, JD Block,Sect 3, Kolkata 700106, India
关键词
VOLATILE ORGANIC-COMPOUNDS; ENHANCED RAMAN-SCATTERING; SENSOR ARRAY; GRAPHENE OXIDE; FREQUENCY-MODULATION; NO2; GAS; ABSORPTION-SPECTROSCOPY; ANALYTICAL-CHEMISTRY; PATTERN-RECOGNITION; ZNO NANOPARTICLES;
D O I
10.1039/d1an02070f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views. Recent reviews on gas sensors/techniques are limited to specific sensors, sensors with unconventional materials, various technological exploitation, or specific applications. However, the selectivity is either unexplored in most cases or explained concerning the materials/techniques involved in a demonstration. Therefore, there is a pressing need to identify the possible ways to improve the selectivity of a gas sensor/technique with low or zero cross-sensitivity to other compounds/gases present in the working environment. Analytical techniques involving spectroscopic and mass-spectrometry-based methods are excellent in selectivity but have limited applicability for field deployment compared to the miniatured solid state sensors. Solid state sensors are the mainly studied gas sensors due to their flexibility, portability, and cost-effectiveness, and being technologically favorable but suffer from low selectivity in harsh and humid environments. This review will evaluate the limitations and possible solutions to selectivity issues in a wide variety of gas sensors. Here, we have discussed the gas-sensor technologies and underlying sensing mechanisms in two main groups - spectroscopic and non-spectroscopic. Recent state-of-the-art techniques and fundamental challenges are discussed to improve the selectivity and other gas sensor indicators and future perspectives.
引用
收藏
页码:1024 / 1054
页数:31
相关论文
共 363 条
[1]   Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review [J].
Aarya, Suveda ;
Kumar, Yogesh ;
Chahota, R. K. .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (02) :269-290
[2]   Simulation/Experiment Confrontation, an Efficient Approach for Sensitive SAW Sensors Design [J].
Achour, Bilel ;
Attia, Ghada ;
Zerrouki, Chouki ;
Fourati, Najla ;
Raoof, Kosai ;
Yaakoubi, Nourdin .
SENSORS, 2020, 20 (17) :1-14
[3]   Application of tungsten oxide thin film in the photonic crystal cavity for hydrogen sulfide gas sensing [J].
Afsari, Afrooz ;
Sarraf, Mohammad Javadian ;
Khatib, Farzan .
OPTIK, 2021, 227
[4]   Gas sensing properties of defect-controlled ZnO-nanowire gas sensor [J].
Ahn, M. -W. ;
Park, K. -S. ;
Heo, J. -H. ;
Park, J. -G. ;
Kim, D. -W. ;
Choi, K. J. ;
Lee, J. -H. ;
Hong, S. -H. .
APPLIED PHYSICS LETTERS, 2008, 93 (26)
[5]   Chip-scale gas chromatography: From injection through detection [J].
Akbar, Muhammad ;
Restaino, Michael ;
Agah, Masoud .
MICROSYSTEMS & NANOENGINEERING, 2015, 1
[6]   Measurement of low concentrations of NO2 gas by differential optical absorption spectroscopy method [J].
Al-Jalal, AbdulAziz ;
Al-Basheer, Watheq ;
Gasmi, Khaled ;
Romadhon, Moch S. .
MEASUREMENT, 2019, 146 :613-617
[7]   A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives [J].
Aldhafeeri, Tahani ;
Tran, Manh-Kien ;
Vrolyk, Reid ;
Pope, Michael ;
Fowler, Michael .
INVENTIONS, 2020, 5 (03) :1-18
[8]   Plasma surface modification of polymers for sensor applications [J].
Aleman, Carlos ;
Fabregat, Georgina ;
Armelin, Elaine ;
Buendia, Jorge J. ;
Llorca, Jordi .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (41) :6515-6533
[9]   Hydrogen Sulfide (H2S) Gas Sensor: A Review [J].
Ali, Fajr I. M. ;
Awwad, Falah ;
Greish, Yaser E. ;
Mahmoud, Saleh T. .
IEEE SENSORS JOURNAL, 2019, 19 (07) :2394-2407
[10]   Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing [J].
Amrehn, Sabrina ;
Wu, Xia ;
Wagner, Thorsten .
ACS SENSORS, 2018, 3 (01) :191-199