Self-Sacrifice Template Construction of Uniform Yolk-Shell ZnS@C for Superior Alkali-Ion Storage

被引:88
作者
Xu, Xijun [1 ,2 ,3 ]
Li, Fangkun [1 ,2 ]
Zhang, Dechao [1 ,2 ]
Liu, Zhengbo [1 ,2 ]
Zuo, Shiyong [1 ,2 ]
Zeng, Zhiyuan [3 ]
Liu, Jun [1 ,2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
alkali-ion batteries; anode; long-cycle life; yolk-shell; ZnS@C nanorods; POROUS CARBON POLYHEDRA; HIGH-PERFORMANCE ANODE; LITHIUM-ION; SODIUM; NANOPARTICLES; NANOSPHERES; NANOBOXES; MECHANISM; GRAPHENE;
D O I
10.1002/advs.202200247
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Secondary batteries have been widespread in the daily life causing an ever-growing demand for long-cycle lifespan and high-energy alkali-ion batteries. As an essential constituent part, electrode materials with superior electrochemical properties play a vital role in the battery systems. Here, an outstanding electrode of yolk-shell ZnS@C nanorods is developed, introducing considerable void space via a self-sacrificial template method. Such carbon encapsulated nanorods moderate integral electronic conductivity, thus ensuring rapid alkali-ions/electrons transporting. Furthermore, the porous structure of these nanorods endows enough void space to mitigate volume stress caused by the insertion/extraction of alkali-ions. Due to the unique structure, these yolk-shell ZnS@C nanorods achieve superior rate performance and cycling performance (740 mAh g(-1) at 1.0 A g(-1) after 540 cycles) for lithium-ion batteries. As a potassium-ion batteries anode, they achieve an ultra-long lifespan delivering 211.1 mAh g(-1) at 1.0 A g(-1) after 5700 cycles. The kinetic analysis reveals that these ZnS@C nanorods with considerable pseudocapacitive contribution benefit the fast lithiation/delithiation. Detailed transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses indicate that such yolk-shell ZnS@C anode is a typical reversible conversion reaction mechanism accomplished by alloying processes. This rational design strategy opens a window for the development of superior energy storage materials.
引用
收藏
页数:11
相关论文
共 61 条
[1]   C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage [J].
Chao, Dongliang ;
Ouyang, Bo ;
Liang, Pei ;
Tran Thi Thu Huong ;
Jia, Guichong ;
Huang, Hui ;
Xia, Xinhui ;
Rawat, Rajdeep Singh ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (49)
[2]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[3]   From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[4]   General Synthesis of Dual Carbon-Confined Metal Sulfides Quantum Dots Toward High-Performance Anodes for Sodium-Ion Batteries [J].
Chen, Ziliang ;
Wu, Renbing ;
Liu, Miao ;
Wang, Hao ;
Xu, Hongbin ;
Guo, Yanhui ;
Song, Yun ;
Fang, Fang ;
Yu, Xuebin ;
Sun, Dalin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (38)
[5]   Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties [J].
Chen, Ziliang ;
Wu, Renbing ;
Wang, Hao ;
Jiang, Yukun ;
Jin, Lin ;
Guo, Yanhui ;
Song, Yun ;
Fang, Fang ;
Sun, Dalin .
CHEMICAL ENGINEERING JOURNAL, 2017, 326 :680-690
[6]   Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior [J].
Chu, Jianhua ;
Wang, Wei Alex ;
Feng, Jianrui ;
Lao, Cheng-Yen ;
Xi, Kai ;
Xing, Lidong ;
Han, Kun ;
Li, Qiang ;
Song, Lei ;
Li, Ping ;
Li, Xin ;
Bao, Yanping .
ACS NANO, 2019, 13 (06) :6906-6916
[7]   NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries [J].
Dong, Caifu ;
Liang, Jianwen ;
He, Yanyan ;
Li, Chuanchuan ;
Chen, Xiaoxia ;
Guo, Lijun ;
Tian, Fang ;
Qian, Yitai ;
Xu, Liqiang .
ACS NANO, 2018, 12 (08) :8277-8287
[8]   ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries [J].
Dong, Shihua ;
Li, Caixia ;
Ge, Xiaoli ;
Li, Zhaoqiang ;
Miao, Xianguang ;
Yin, Longwei .
ACS NANO, 2017, 11 (06) :6474-6482
[9]   Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects [J].
Fan, Ersha ;
Li, Li ;
Wang, Zhenpo ;
Lin, Jiao ;
Huang, Yongxin ;
Yao, Ying ;
Chen, Renjie ;
Wu, Feng .
CHEMICAL REVIEWS, 2020, 120 (14) :7020-7063
[10]   ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries [J].
Fang, Daliang ;
Chen, Shimou ;
Wang, Xi ;
Bando, Yoshio ;
Golberg, Dmitri ;
Zhang, Suojiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (18) :8358-8365