An electrostatic-elastic membrane system with an external pressure

被引:3
作者
Beckham, J. Regan [1 ]
Pelesko, John A. [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19713 USA
关键词
Electrostatic MEMS; Semi-linear elliptic equation; Phase plane; Perturbation methods; STABILITY;
D O I
10.1016/j.mcm.2011.06.051
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An elastic membrane subject to an external pressure and electrostatic force is considered. The resulting elliptic problem is analyzed for the strip and disk geometry. The structure of the solution set is explored with the aid of phase plane techniques, perturbation methods, and bifurcation analysis. In each case, the stability of the solution is determined using linear stability theory with the aid of the bifurcation diagram. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2686 / 2708
页数:23
相关论文
共 10 条
[2]  
BECKHAM J. R., 2008, THESIS U DELAWARE
[3]   ANALYSIS OF THE DYNAMICS AND TOUCHDOWN IN A MODEL OF ELECTROSTATIC MEMS [J].
Flores, G. ;
Mercado, G. ;
Pelesko, J. A. ;
Smyth, N. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (02) :434-446
[4]   BIFURCATIONS OF SOME ELLIPTIC PROBLEMS WITH A SINGULAR NONLINEARITY VIA MORSE INDEX [J].
Guo, Zongming ;
Liu, Zhongyuan ;
Wei, Juncheng ;
Zhou, Feng .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (02) :507-525
[5]   STABILITY AND FOLDS [J].
MADDOCKS, JH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :301-328
[6]   2-DIMENSIONAL PROBLEMS OF ELECTROHYDROSTATIC STABILITY [J].
MICHAEL, DH ;
ONEILL, ME .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1224) :331-&
[7]  
Pao C. V., 2004, Nonlinear Parabolic and Elliptic Equations, DOI DOI 10.1007/978-1-4615-3034-3
[8]  
Pelesko J.A., 2005, J COMPUT THEOR NANOS, V1
[9]  
Pelesko JA., 2003, Modeling MEMS and NEMS
[10]   COALESCENCE OF CLOSELY SPACED DROPS WHEN THEY ARE AT DIFFERENT ELECTRIC POTENTIALS [J].
TAYLOR, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 306 (1487) :423-&