A Gold@Polydopamine Core-Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells

被引:201
作者
Choi, Chun Kit K. [1 ]
Li, Jinming [1 ,4 ]
Wei, Kongchang [1 ,4 ]
Xu, Yang J. [1 ]
Ho, Lok Wai C. [2 ]
Zhu, Meiling [1 ]
To, Kenneth K. W. [3 ]
Choi, Chung Hang J. [2 ,4 ]
Bian, Liming [1 ,4 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn Biomed Engn, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn Biomed Engn, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Sch Pharm, Shatin, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Shun Hing Inst Adv Engn, Shatin, Hong Kong, Peoples R China
关键词
MESSENGER-RNA DETECTION; QUENCHED FLUORESCENT OLIGONUCLEOTIDES; NUCLEIC-ACID; LIVING CELLS; OSTEOBLAST DIFFERENTIATION; OSTEOGENIC DIFFERENTIATION; PHOTOTHERMAL THERAPY; NANOPARTICLES; BONE; DELIVERY;
D O I
10.1021/jacs.5b01457
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA-hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and rniR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA-hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.
引用
收藏
页码:7337 / 7346
页数:10
相关论文
共 52 条
[1]   Human mesenchymal stem cells: from basic biology to clinical applications [J].
Abdallah, B. M. ;
Kassem, M. .
GENE THERAPY, 2008, 15 (02) :109-116
[2]   MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31 [J].
Baglio, Serena Rubina ;
Devescovi, Valentina ;
Granchi, Donatella ;
Baldini, Nicola .
GENE, 2013, 527 (01) :321-331
[3]   Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening [J].
Bastus, Neus G. ;
Comenge, Joan ;
Puntes, Victor .
LANGMUIR, 2011, 27 (17) :11098-11105
[4]  
Black KCL, 2013, NANOMEDICINE-UK, V8, P17, DOI [10.2217/NNM.12.82, 10.2217/nnm.12.82]
[5]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
[6]  
2-F
[7]   Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J].
Caplan, Arnold I. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 213 (02) :341-347
[8]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[9]   Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells [J].
Chithrani, BD ;
Ghazani, AA ;
Chan, WCW .
NANO LETTERS, 2006, 6 (04) :662-668
[10]   Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates [J].
Choi, Chung Hang J. ;
Hao, Liangliang ;
Narayan, Suguna P. ;
Auyeung, Evelyn ;
Mirkin, Chad A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (19) :7625-7630