ERROR-CORRECTING CODES FROM k-RESOLVING SETS

被引:15
作者
Bailey, Robert F. [1 ]
Yero, Ismael G. [2 ]
机构
[1] Mem Univ Newfoundland, Sch Sci & Environm Math, Grenfell Campus, Corner Brook, NF A2H 6P9, Canada
[2] Univ Cadiz, Escuela Politecn Super Algeciras, Dept Matemat, Algeciras 11202, Spain
关键词
error-correcting code; k-resolving set; k-metric dimension; covering design; uncovering; grid graph; METRIC DIMENSION; UNCOVERINGS; GRAPHS;
D O I
10.7151/dmgt.2087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate a construction of error-correcting codes from graphs by means of k-resolving sets, and present a decoding algorithm which makes use of covering designs. Along the way, we determine the k-metric dimension of grid graphs (i.e., Cartesian products of paths).
引用
收藏
页码:341 / 355
页数:15
相关论文
共 25 条
[1]  
[Anonymous], La jolla covering repository
[2]  
[Anonymous], 1953, Theory and Applications of Distance Geometry
[3]   Uncoverings-by-bases for base-transitive permutation groups [J].
Bailey, Robert F. .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 41 (02) :153-176
[4]  
Bailey RF, 2011, AUSTRALAS J COMB, V50, P219
[5]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[6]   Error-correcting codes from permutation groups [J].
Bailey, Robert F. .
DISCRETE MATHEMATICS, 2009, 309 (13) :4253-4265
[7]  
Beardon A. F., PREPRINT
[8]   Permutation codes [J].
Cameron, Peter J. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) :482-490
[9]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[10]   Constructions for permutation codes in powerline communications [J].
Chu, WS ;
Colbourn, CJ ;
Dukes, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) :51-64