Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1)

被引:26
作者
Buro, Lauren J. [1 ]
Chipumuro, Edmond [1 ]
Henriksen, Melissa A. [1 ]
机构
[1] Univ Virginia, Dept Biol, Charlottesville, VA 22903 USA
来源
EPIGENETICS & CHROMATIN | 2010年 / 3卷
关键词
RNA-POLYMERASE-II; H2B UBIQUITYLATION; H3; METHYLATION; GENOME-WIDE; HUMAN-CELLS; DEACETYLASE ACTIVITY; MAMMALIAN CHROMATIN; CODING REGIONS; COMPLEX; YEAST;
D O I
10.1186/1756-8935-3-16
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Signal transducer and activator of transcription (STAT) activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results: Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1). Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFN)gamma induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II) occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS)-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFN gamma induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD) of Pol II are disrupted during gene activation as well. Conclusions: H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.
引用
收藏
页数:16
相关论文
共 66 条
[61]   Molecular Regulation of H3K4 Trimethylation by Wdr82, a Component of Human Set1/COMPASS [J].
Wu, Min ;
Wang, Peng Fei ;
Lee, Jung Shin ;
Martin-Brown, Skylar ;
Florens, Laurence ;
Washburn, Michael ;
Shilatifard, Ali .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (24) :7337-7344
[62]   H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex [J].
Wyce, Anastasia ;
Xiao, Tiaojiang ;
Whelan, Kelly A. ;
Kosman, Christine ;
Walter, Wendy ;
Eick, Dirk ;
Hughes, Timothy R. ;
Krogan, Nevan J. ;
Strahl, Brian D. ;
Berger, Shelley L. .
MOLECULAR CELL, 2007, 27 (02) :275-288
[63]   Histone H2B ubiquitylation is associated with elongating RNA polymerase II [J].
Xiao, TJ ;
Kao, CF ;
Krogan, NJ ;
Sun, ZW ;
Greenblatt, JF ;
Osley, MA ;
Strahl, BD .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (02) :637-651
[64]   Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36 [J].
Youdell, Michael L. ;
Kizer, Kelby O. ;
Kisseleva-Romanova, Elena ;
Fuchs, Stephen M. ;
Duro, Eris ;
Strahl, Brian D. ;
Mellor, Jane .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (16) :4915-4926
[65]   The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression [J].
Zhang, Xiao-Yong ;
Varthi, Maya ;
Sykes, Stephen M. ;
Phillips, Charles ;
Warzecha, Claude ;
Zhu, Wenting ;
Wyce, Anastasia ;
Thorne, Alan W. ;
Berger, Shelley L. ;
McMahon, Steven B. .
MOLECULAR CELL, 2008, 29 (01) :102-111
[66]   Monoubiquitination of human histone H2B:: The factors involved and their roles in HOX gene regulation [J].
Zhu, B ;
Zheng, Y ;
Pham, AD ;
Mandal, SS ;
Erdjument-Bromage, H ;
Tempst, P ;
Reinberg, D .
MOLECULAR CELL, 2005, 20 (04) :601-611