Simulation of collaborative product development knowledge diffusion using a new cellular automata approach

被引:7
作者
Kunpeng, Y. [1 ]
Jiafu, S. [2 ]
Hui, H. [2 ]
机构
[1] Ocean Univ China, Managemengt Coll, Qingdao, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Elect Commerce & Supply Chain S, Chongqing, Peoples R China
来源
ADVANCES IN PRODUCTION ENGINEERING & MANAGEMENT | 2017年 / 12卷 / 03期
关键词
Collaborative product development; Knowledge diffusion; Influencing factors; Cellular automata; NETWORK STRUCTURE;
D O I
10.14743/apem2017.3.257
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to quantitatively examine the diffusion process and pattern of collaborative product development (CPD), this paper puts forward a quantitative research model of CPD knowledge diffusion based on improved cellular automata. In light of the idea of SIS epidemic model and the local knowledge interaction characteristic of CPD knowledge diffusion, the influencing factors of knowledge diffusion are abstracted into the parametric variables in the process of knowledge diffusion, and the knowledge-SIS (K-SIS) model is constructed based on improved cellular automata for CPD knowledge diffusion. Finally, the K-SIS model is simulated to study the diffusion process and pattern of CPD knowledge, revealing the influence mechanism of CPD knowledge diffusion influencing factors on the diffusion process. The research results provide valuable reference for improving the efficiency of CPD knowledge diffusion. (C) 2017 PEI, University of Maribor. All rights reserved.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 17 条
[1]   NEW PRODUCT GROWTH FOR MODEL CONSUMER DURABLES [J].
BASS, FM .
MANAGEMENT SCIENCE SERIES A-THEORY, 1969, 15 (05) :215-227
[2]  
Gu B., 2016, IEEE T NEUR NET LEAR, DOI [10.1109/TNNLS.2016.2527796, DOI 10.1109/TNNLS.2016.2527796]
[3]   Modelling a dynamic market potential: A class of automata networks for diffusion of innovations [J].
Guseo, Renato ;
Guidolin, Mariangela .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2009, 76 (06) :806-820
[4]   Structural effects of R&D collaboration network on knowledge diffusion performance [J].
Kim, Hyukjoon ;
Park, Yongtae .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (05) :8986-8992
[5]  
[李莉 LI Li], 2007, [科学学与科学技术管理, Science of Science & Management of S.T.], V28, P107
[6]   A study on coevolutionary dynamics of knowledge diffusion and social network structure [J].
Luo, Shuangling ;
Du, Yanyan ;
Liu, Peng ;
Xuan, Zhaoguo ;
Wang, Yanzhang .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (07) :3619-3633
[7]  
Meng X., 2004, STUDIES SCI SCI, V21, P636
[8]   Network structure and knowledge transfer: The effects of cohesion and range [J].
Reagans, R ;
McEvily, B .
ADMINISTRATIVE SCIENCE QUARTERLY, 2003, 48 (02) :240-267
[9]   EMERGENT TURING PATTERN IN EPIDEMIC SPREADING USING CELLULAR AUTOMATON [J].
Sun, Gui-Quan ;
Jin, Zhen ;
Li, Li .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32) :4605-4613
[10]  
Sun Y.-W., 2011, CHINA SOFT SCI, V6, P17, DOI [10.3969/j.issn.1002-9753.2011.06.013, DOI 10.3969/J.ISSN.1002-9753.2011.06.013]