Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum

被引:38
作者
Wang, Xinguang [1 ,2 ]
Yang, Zhen [2 ]
Zhao, Shengmei [1 ,2 ]
机构
[1] NUPT, Inst Signal Proc & Transmiss, Nanjing 210003, Jiangsu, Peoples R China
[2] NUPT, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
来源
OPTIK | 2019年 / 176卷
基金
中国国家自然科学基金;
关键词
Airy vortex beam; Orbital angular momentum; Oceanic turbulence; Propagation property; EVOLUTION; COMMUNICATION; BEHAVIOR;
D O I
10.1016/j.ijleo.2018.09.028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With Rytov approximation theory, we derive the analytic expression of detection probability of Airy vortex beam carrying orbital angular momentum (OAM) through an anisotropic weak oceanic turbulence. We investigate the influences of turbulence parameters and beam parameters on the propagation properties of Airy-OAM beam. The numerical simulation results show that the anisotropic oceanic turbulence with a lower dissipation rate of temperature variance, smaller ratio of temperature and salinity contributions to the refractive index spectrum, larger dissipation rate of kinetic energy per unit mass of fluid, bigger inner scale factor, higher anisotropic coefficient causes the larger detection probability of Airy-OAM beam. Moreover, the Airy-OAM beam with a smaller topological charge, larger main ring radius and longer wavelength, has strong resistance to oceanic turbulent interference. Additionally, the detection probability decreases with the increase of receiving aperture size. In comparison with Laguerre-Gaussian-OAM beam, Airy-OAM beam has more anti-interference to turbulence when its topological charge is larger than 5 due to its non-diffraction and self-healing characteristics. The results are useful for underwater optical communication link using Airy-OAM beam.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 34 条
  • [21] Underwater optical communications using orbital angular momentum-based spatial division multiplexing
    Willner, Alan E.
    Zhao, Zhe
    Ren, Yongxiong
    Li, Long
    Xie, Guodong
    Song, Haoqian
    Liu, Cong
    Zhang, Runzhou
    Bao, Changjing
    Pang, Kai
    [J]. OPTICS COMMUNICATIONS, 2018, 408 : 21 - 25
  • [22] Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides
    Wu, Mengru
    Lang, Tingting
    Shi, Guohua
    Han, Zhanghua
    [J]. OPTICS COMMUNICATIONS, 2018, 410 : 520 - 524
  • [23] Spreading and wandering of Gaussian-Schell model laser beams in an anisotropic turbulent ocean
    Wu, Yuqian
    Zhang, Yixin
    Zhu, Yun
    Hu, Zhengda
    [J]. LASER PHYSICS, 2016, 26 (09)
  • [24] Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence
    Xu, Jia
    Zhao, Daomu
    [J]. OPTICS AND LASER TECHNOLOGY, 2014, 57 : 189 - 193
  • [25] Yang T., 2017, Acta Opt. Sin, V37
  • [26] Analysis of orbital angular momentum spectra of Hankel-Bessel beams in channels with oceanic turbulence
    Yin Xiao-Li
    Guo Yi-Lin
    Yan Hao
    Cui Xiao-Zhou
    Chang Huan
    Tian Qing-Hua
    Wu Guo-Hua
    Zhang Qi
    Liu Bo
    Xin Xiang-Jun
    [J]. ACTA PHYSICA SINICA, 2018, 67 (11)
  • [27] Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam
    Yu, Lin
    Zhang, Yixin
    [J]. OPTICS EXPRESS, 2017, 25 (19): : 22565 - 22574
  • [28] Trapping and guiding microparticles with morphing autofocusing Airy beams
    Zhang, Peng
    Prakash, Jai
    Zhang, Ze
    Mills, Matthew S.
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Chen, Zhigang
    [J]. OPTICS LETTERS, 2011, 36 (15) : 2883 - 2885
  • [29] Mimicking Faraday Rotation to Sort the Orbital Angular Momentum of Light
    Zhang, Wuhong
    Qi, Qianqian
    Zhou, Jie
    Chen, Lixiang
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [30] Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states
    Zhao, S. M.
    Leach, J.
    Gong, L. Y.
    Ding, J.
    Zheng, B. Y.
    [J]. OPTICS EXPRESS, 2012, 20 (01): : 452 - 461