High-Performance Lithium-Oxygen Batteries Using a Urea-Based Electrolyte with Kinetically Favorable One-Electron Li2O2 Oxidation Pathways

被引:17
|
作者
Sun, Zongqiang [1 ]
Lin, Xiaodong [1 ]
Wang, Chutao [1 ]
Hu, Ajuan [1 ]
Hou, Qing [1 ]
Tan, Yanyan [1 ]
Dou, Wenjie [1 ]
Yuan, Ruming [1 ]
Zheng, Mingsen [1 ,2 ]
Dong, Quanfeng [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Fujian, Peoples R China
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrolyte Solvents; Hydrogen Abstraction; Li-O-2; Batteries; Li2O2; Oxidation; 1; 3; 3-Tetramethylurea; DIMETHYL-SULFOXIDE; LI-O-2; BATTERY; REDUCTION; DECOMPOSITION; MECHANISM; SOLVENTS;
D O I
10.1002/anie.202207570
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Glymes are the most widely used electrolyte solvents in lithium-oxygen batteries (LOBs) due to their relatively high stability. However, their associated LOBs have long been plagued by large charge overpotential, which is closely related to the sluggish two-electron Li2O2 oxidation mechanism. Here, we report a new electrolyte solvent-1,1,3,3-tetramethylurea (TMU) for LOBs with high performance and an alternative mechanism, where a kinetically favorable one-electron Li2O2 oxidation pathway can happen in the urea electrolyte system, thus leading to a much lower charge overpotential (approximate to 0.51 V) compared to the tetraglyme-based LOBs (approximate to 1.27 V). Besides, TMU also exhibits good stability since it does not contain any alpha-hydrogen atoms that are vulnerable to be attacked by superoxide species, thus suppressing the hydrogen abstraction side reactions. Consequently, the TMU-based LOBs can stably work for more than 135 cycles, which is four times that of the tetraglyme-based LOBs (approximate to 28 cycles).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries
    Wang, Yu
    Lai, Nien-Chu
    Lu, Ying-Rui
    Zhou, Yucun
    Dong, Chung-Li
    Lu, Yi-Chun
    JOULE, 2018, 2 (11) : 2364 - 2380
  • [2] Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2
    Chalasani, Dinesh
    Lucht, Brett L.
    ECS ELECTROCHEMISTRY LETTERS, 2012, 1 (02) : A38 - A42
  • [3] Impact of a Gold Nanocolloid Electrolyte on Li2O2 Morphology and Performance of a Lithium-Oxygen Battery
    Luo, Zhihong
    Li, Fujie
    Hu, Chengliang
    Li, Degui
    Cao, Yuancheng
    Scott, Keith
    Gong, Xiaojing
    Luo, Kun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) : 4062 - 4071
  • [4] Sluggish Li2O2 dissolution - a key to unlock high-capacity lithium-oxygen batteries
    He, Lu
    Wang, Shuo
    Yu, Fengjiao
    Chen, Yuhui
    CHEMICAL SCIENCE, 2025, 16 (02) : 627 - 636
  • [5] Efficient Li2O2 oxidation kinetics of perovskite-type lanthanum chromium-based oxide by promoter interface formation for lithium-oxygen batteries
    Sung, Myeong-Chang
    Lee, Gwang-Hee
    Kim, Dong-Wan
    ENERGY STORAGE MATERIALS, 2023, 60
  • [6] An Open-Structured Matrix as Oxygen Cathode with High Catalytic Activity and Large Li2O2 Accommodations for Lithium-Oxygen Batteries
    Lin, Xiaodong
    Yuan, Ruming
    Cai, Senrong
    Jiang, Youhong
    Lei, Jie
    Liu, San-Gui
    Wu, Qi-Hui
    Liao, Hong-Gang
    Zheng, Mingsen
    Dong, Quanfeng
    ADVANCED ENERGY MATERIALS, 2018, 8 (18)
  • [7] Boosting the electrochemistry of Li2O2 in lithium-oxygen batteries by plasmon-induced hot-electron injection
    Yang, Weixue
    Li, Fei
    Liu, Huali
    Li, Zhen
    Zhao, Jiaqi
    Wang, Yu
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (45) : 21160 - 21167
  • [8] Construction of an Oxygen-Vacancy-Rich CeO2@CoO Heterojunction toward High-Performance Lithium-Oxygen Batteries
    Jin, Yixin
    Fu, Yaning
    Ma, Shiyu
    Wang, Wen
    Lu, Youcai
    Liu, Qingchao
    ACS APPLIED MATERIALS & INTERFACES, 2025, : 22568 - 22579
  • [9] Exploring MXenes as Cathodes for Non-Aqueous Lithium-Oxygen Batteries: Design Rules for Selectively Nucleating Li2O2
    Lee, Andrew
    Krishnamurthy, Dilip
    Viswanathan, Venkatasubramanian
    CHEMSUSCHEM, 2018, 11 (12) : 1911 - 1918
  • [10] Towards high performance lithium-oxygen batteries: Co3O4-NiO heterostructure induced preferential growth of ultrathin Li2O2 film
    Dong, Ji-Jun
    Ma, Chao
    Zhang, Qiang
    Bai, Wen-Long
    Cai, Zhi-Peng
    Li, Se-Si
    Zhang, Zhen
    Wu, Xue-Yan
    Wei, Xiao
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863