Strong transitivity properties for operators

被引:22
作者
Bes, J. [1 ]
Menet, Q. [2 ]
Peris, A. [3 ]
Puig, Y. [4 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Artois, EA 2462, LML, F-62300 Lens, France
[3] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Edif 8E,4a Planta, E-46022 Valencia, Spain
[4] Univ Calif Riverside, Dept Math, 900 Univ Ave, Riverside, CA 92521 USA
关键词
Hypercyclic operators; Furstenberg families; Transitivity properties; Mixing properties; MIXING OPERATORS;
D O I
10.1016/j.jde.2018.07.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Furstenberg family F of subsets of N, an operator T on a topological vector space X is called F-transitive provided for each non-empty open subsets U, V of X the set {n is an element of Z(+) : T-n (U) boolean AND V not equal empty set} belongs to We classify the topologically transitive operators with a hierarchy of F-transitive subclasses by considering families F that are determined by various notions of largeness and density in Z(+). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1313 / 1337
页数:25
相关论文
共 21 条
[1]   Unimodular eigenvalues, uniformly distributed sequences and linear dynamics [J].
Badea, Catalin ;
Grivaux, Sophie .
ADVANCES IN MATHEMATICS, 2007, 211 (02) :766-793
[2]  
Bayart F., 2009, CAMB TRACT MATH, V179
[3]   Invariant Gaussian measures for operators on Banach spaces and linear dynamics [J].
Bayart, Frederic ;
Grivaux, Sophie .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :181-210
[4]   Frequently hypercyclic operators [J].
Bayart, Frederic ;
Grivaux, Sophie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) :5083-5117
[5]   Difference sets and frequently hypercyclic weighted shifts [J].
Bayart, Frederic ;
Ruzsa, Imre Z. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :691-709
[6]  
Bergelson V., 2008, Colloq. Math, V110, P117
[7]   Recurrence properties of hypercyclic operators [J].
Bes, J. ;
Menet, Q. ;
Peris, A. ;
Puig, Y. .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :545-572
[8]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[9]  
Bonilla A., 2016, ARXIV160107276V1
[10]  
Furstenberg H., 1981, M.B. Porter lectures.