On the Global Behavior of Weak Null Quasilinear Wave Equations

被引:15
作者
Deng, Yu [1 ]
Pusateri, Fabio [2 ,3 ]
机构
[1] Courant Inst Math Sci, New York, NY USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Toronto, 40 St George St,Room 6218, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
EINSTEIN VACUUM EQUATIONS; ASYMPTOTIC-BEHAVIOR; WATER-WAVES; NONLINEAR SCHRODINGER; SPACE-TIME; BLOW-UP; SYSTEMS; SCATTERING; EXISTENCE;
D O I
10.1002/cpa.21881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a subclass of those quasilinear wave equations in 3 + 1 space-time dimensions that satisfy the "weak null condition" as defined by Lindblad and Rodnianski , and study the large-time behavior of solutions to the Cauchy problem. The prototype for the class of equations considered is - partial differential t2u+1+u Delta u=0. Global solutions for such equations have been constructed by Lindblad and Alinhac. Our main results are the derivation of a precise asymptotic system with good error bounds, and a detailed description of the behavior of solutions close to the light cone, including the blowup at infinity. (c) 2019 Wiley Periodicals, Inc.
引用
收藏
页码:1035 / 1099
页数:65
相关论文
共 44 条
[21]   Global Regularity for 2D Water Waves with Surface Tension [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 256 (1227) :1-+
[22]   Global Analysis of a Model for Capillary Water Waves in Two Dimensions [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (11) :2015-2071
[23]   Global solutions for the gravity water waves system in 2d [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
INVENTIONES MATHEMATICAE, 2015, 199 (03) :653-804
[24]   Global solutions of quasilinear systems of Klein-Gordon equations in 3D [J].
Ionescu, Alexandru D. ;
Pausader, Benoit .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (11) :2355-2431
[25]   Nonlinear fractional Schrodinger equations in one dimension [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :139-176
[26]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[27]   BLOW-UP OF SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :235-268
[28]   ALMOST GLOBAL EXISTENCE TO NONLINEAR-WAVE EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F ;
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :443-455
[29]  
JOHN F, 1989, LECT NOTES MATH, V1402
[30]  
Kato J, 2011, DIFFER INTEGRAL EQU, V24, P923