On the Global Behavior of Weak Null Quasilinear Wave Equations

被引:15
作者
Deng, Yu [1 ]
Pusateri, Fabio [2 ,3 ]
机构
[1] Courant Inst Math Sci, New York, NY USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Toronto, 40 St George St,Room 6218, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
EINSTEIN VACUUM EQUATIONS; ASYMPTOTIC-BEHAVIOR; WATER-WAVES; NONLINEAR SCHRODINGER; SPACE-TIME; BLOW-UP; SYSTEMS; SCATTERING; EXISTENCE;
D O I
10.1002/cpa.21881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a subclass of those quasilinear wave equations in 3 + 1 space-time dimensions that satisfy the "weak null condition" as defined by Lindblad and Rodnianski , and study the large-time behavior of solutions to the Cauchy problem. The prototype for the class of equations considered is - partial differential t2u+1+u Delta u=0. Global solutions for such equations have been constructed by Lindblad and Alinhac. Our main results are the derivation of a precise asymptotic system with good error bounds, and a detailed description of the behavior of solutions close to the light cone, including the blowup at infinity. (c) 2019 Wiley Periodicals, Inc.
引用
收藏
页码:1035 / 1099
页数:65
相关论文
共 44 条
[1]  
Alazard T, 2015, ANN SCI ECOLE NORM S, V48, P1149
[2]  
Alinhac S, 2003, ASTERISQUE, P1
[3]   Rank 2 singular solutions for quasilinear wave equations [J].
Alinhac, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (18) :955-984
[4]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[5]  
[Anonymous], 1995, Progr. Nonlinear Differential Equations Appl.
[6]   Asymptotic Behavior of the Maxwell-Klein-Gordon System [J].
Candy, Timothy ;
Kauffman, Christopher ;
Lindblad, Hans .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (02) :683-716
[7]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[8]  
Christodoulou D., 1993, Sminaire Equations aux drives partielles, P1
[9]  
Christodoulou D, 2007, PROC SYM AP, V65, P17
[10]   Multispeed Klein-Gordon Systems in Dimension Three [J].
Deng, Yu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (19) :6070-6144