Adaptivity and optimality of the monotone least-squares estimator

被引:17
作者
Cator, Eric [1 ]
机构
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
关键词
adaptivity; least squares; monotonicity; optimality; ASYMPTOTIC NORMALITY; GRENANDER-ESTIMATOR; ERROR; REGRESSION;
D O I
10.3150/10-BEJ289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we will consider the estimation of a monotone regression (or density) function in a fixed point by the least-squares (Grenander) estimator. We will show that this estimator is locally asymptotic minimax, in the sense that, for each f(0), the attained rate of the probabilistic error is uniform over a shrinking L-2-neighborhood of f(0) and there is no estimator that attains a significantly better uniform rate over these shrinking neighborhoods. Therefore, it adapts to the individual underlying function, not to a smoothness class of functions. We also give general conditions for which we can calculate a (non-standard) limiting distribution for the estimator.
引用
收藏
页码:714 / 735
页数:22
相关论文
共 15 条
[1]  
Brunk HD, 1970, NONPARAMETRIC TECHNI, P195
[2]   Adaptation under probabilistic error for estimating linear functionals [J].
Cai, TT ;
Low, MG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (01) :231-245
[3]  
CATOR EA, 2009, ARXIV08051855
[4]   Sharp asymptotics for isotonic regression [J].
Durot, C .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (02) :222-240
[5]   On the LP-error of monotonicity constrained estimators [J].
Durot, Cecile .
ANNALS OF STATISTICS, 2007, 35 (03) :1080-1104
[6]  
GOLUBEV GK, 1991, TEORIYA VEROYATNOST, V36, P143
[7]  
Grenander U., 1956, SKAND AKTUARIETIDSK, V39, P125, DOI DOI 10.1080/03461238.1956.10414944
[8]  
Groeneboom P, 1999, ANN STAT, V27, P1316
[9]  
Hajek J., 1972, P 6 BERKELEY S MATH, V1, P175
[10]   CUBE ROOT ASYMPTOTICS [J].
KIM, JY ;
POLLARD, D .
ANNALS OF STATISTICS, 1990, 18 (01) :191-219