Schwarzschild geometry counterpart in semiclassical gravity

被引:19
作者
Arrechea, Julio [1 ]
Barcelo, Carlos [1 ]
Carballo-Rubio, Raul [2 ,3 ]
Garay, Luis J. [4 ,5 ,6 ]
机构
[1] CSIC, IAA, Granada 18008, Spain
[2] Florida Space Inst, 12354 Res Pkwy,Partnership 1, Orlando, FL 32826 USA
[3] IFPU, Inst Fundamental Phys Universe, Via Beirut 2, I-34014 Trieste, Italy
[4] Univ Complutense Madrid, Dept Fis Teor, Madrid 28040, Spain
[5] Univ Complutense Madrid, IPARCOS, Madrid 28040, Spain
[6] CSIC, IEM, Serrano 121, Madrid 28006, Spain
关键词
ENERGY;
D O I
10.1103/PhysRevD.101.064059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the effects of vacuum polarization on vacuum static spherically symmetric spacetimes. We start from the Polyakov approximation to the renormalized stress-energy tensor (RSET) of a minimally coupled massless scalar field. This RSET is not regular at r = 0, so we define a regularized version of the Polyakov RSET. Using this regularized RSET, and under the previous symmetry assumptions, we find all the solutions to the semiclassical field equations in vacuum. The resulting counterpart to the Schwarzschild classical geometry substitutes the presence of an event horizon by a wormhole throat that connects an external asymptotically flat region with an internal asymptotic region possessing a naked singularity: there are no semiclassical vacuum solutions with well-defined Cauchy surfaces. We also show that the regularized Polyakov RSET allows for wormhole geometries of arbitrarily small throat radius. This analysis paves the way to future investigations of proper stellar configurations with an internal nonvacuum region.
引用
收藏
页数:13
相关论文
共 26 条
[1]   STRESS-ENERGY TENSOR OF QUANTIZED SCALAR FIELDS IN STATIC SPHERICALLY SYMMETRICAL SPACETIMES [J].
ANDERSON, PR ;
HISCOCK, WA ;
SAMUEL, DA .
PHYSICAL REVIEW D, 1995, 51 (08) :4337-4358
[2]   Sharp bounds on 2m/r of general spherically symmetric static objects [J].
Andreasson, Hakan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (08) :2243-2266
[3]   Vacuum polarization in the Schwarzschild spacetime and dimensional reduction [J].
Balbinot, R ;
Fabbri, A ;
Nicolini, P ;
Frolov, V ;
Sutton, P ;
Zelnikov, A .
PHYSICAL REVIEW D, 2001, 63 (08)
[4]   The fate of black hole horizons in semiclassical gravity [J].
Berthiere, Clement ;
Sarkar, Debajyoti ;
Solodukhin, Sergey N. .
PHYSICS LETTERS B, 2018, 786 :21-27
[5]  
Birrell N.D., 1984, CAMBRIDGE MONOGRAPHS
[6]   GENERAL RELATIVISTIC FLUID SPHERES [J].
BUCHDAHL, HA .
PHYSICAL REVIEW, 1959, 116 (04) :1027-1034
[7]   Stellar Equilibrium in Semiclassical Gravity [J].
Carballo-Rubio, Raul .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)
[8]   QUANTUM VACUUM ENERGY IN 2 DIMENSIONAL SPACE-TIMES [J].
DAVIES, PCW ;
FULLING, SA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 354 (1676) :59-77
[9]   Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography [J].
Fabbri, A. ;
Farese, S. ;
Navarro-Salas, J. ;
Olmo, G. J. ;
Sanchis-Alepuz, H. .
PHYSICAL REVIEW D, 2006, 73 (10)
[10]  
Fabbri Alessandro, 2005, Modeling Black Hole Evaporation