Gradient-free MCMC methods for dynamic causal modelling

被引:29
作者
Sengupta, Biswa [1 ]
Friston, Karl J. [1 ]
Penny, Will D. [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3BG, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
CONVERGENCE;
D O I
10.1016/j.neuroimage.2015.03.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density-albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 43 条
[1]   Smart darting Monte Carlo [J].
Andricioaei, I ;
Straub, JE ;
Voter, AF .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (16) :6994-7000
[2]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[3]  
[Anonymous], 1994, Journal of Computational and Graphical Statistics, DOI DOI 10.2307/1390911
[4]  
[Anonymous], 1992, Statistical Science, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]
[5]   Estimating Bayes factors via thermodynamic integration and population MCMC [J].
Calderhead, Ben ;
Girolami, Mark .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) :4028-4045
[6]   A Metropolis-Hastings algorithm for dynamic causal models [J].
Chumbley, Justin R. ;
Friston, Karl J. ;
Fearn, Tom ;
Kiebel, Stefan J. .
NEUROIMAGE, 2007, 38 (03) :478-487
[7]  
Claeskens G., 2008, Model Selection and Model Averaging, DOI DOI 10.1017/CBO9780511790485
[8]  
Cormen T., 2001, Introduction to Algorithms
[9]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[10]   Mechanisms of evoked and induced responses in MEG/EEG [J].
David, Olivier ;
Kilner, James M. ;
Friston, Karl J. .
NEUROIMAGE, 2006, 31 (04) :1580-1591