The growth speed for the product of consecutive digits in Luroth expansions

被引:4
作者
Zhou, Qinglong [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 198卷 / 01期
关键词
Luroth expansion; Diophantine approximation; Jarnik-like set; Hausdorff dimension; EXACT APPROXIMATION ORDER; PARTIAL QUOTIENTS; NUMBERS; SETS;
D O I
10.1007/s00605-021-01654-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For x is an element of [0, 1), let [d(1)( x), d(2)(x),...] be its Luroth expansion and {p(n)(x)/qn (x), n >= 1} be the sequence of convergents of x. For alpha, beta is an element of [0,+infinity) with a <= beta, we define the exceptional sets E(beta) = {x is an element of [0, 1) : lim sup (n ->infinity) log (d(n)(x)d(n+1)(x))/log q(n)(x) = beta} and F(alpha, beta) = {x [0, 1) : lim inf(n ->infinity) log (d(n)(x)d(n+1)(x))/log qn(x) = a, lim sup(n ->infinity) log d(n)(x)d(n+1)(x))/log q(n)(x) = beta}. In this paper, we completely determine the Hausdorff dimension of sets E(beta) and F(alpha, beta).
引用
收藏
页码:233 / 248
页数:16
相关论文
共 18 条
  • [1] Frequency of digits in the Luroth expansion
    Barreira, Luis
    Iommi, Godofredo
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1479 - 1490
  • [2] Barrionuevo J, 1996, ACTA ARITH, V74, P311
  • [3] Sets of exact approximation order by rational numbers
    Bugeaud, Y
    [J]. MATHEMATISCHE ANNALEN, 2003, 327 (01) : 171 - 190
  • [4] Sets of exact approximation order by rational numbers III
    Bugeaud, Yann
    Moreira, Carlos Gustavo
    [J]. ACTA ARITHMETICA, 2011, 146 (02) : 177 - 193
  • [5] The efficiency of approximating real numbers by Luroth expansion
    Cao, Chunyun
    Wu, Jun
    Zhang, Zhenliang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 497 - 513
  • [6] DAJANI K., 1996, J. Theor. Nombres Bordeaux, V8, P331
  • [7] Falconer K., 2014, FRACTAL GEOMETRY
  • [8] Sets of Dirichlet non-improvable numbers with certain order in the theory of continued fractions
    Feng, Jing
    Xu, Jian
    [J]. NONLINEARITY, 2021, 34 (03) : 1598 - 1611
  • [9] Galambos J., 1976, Lecture Notes in Mathematics, V502
  • [10] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747