Development and genetics of red coloration in the zebrafish relative Danio albolineatus

被引:32
作者
Huang, Delai [1 ]
Lewis, Victor M. [1 ,5 ]
Foster, Tarah N. [2 ]
Toomey, Matthew B. [2 ,3 ]
Corbo, Joseph C. [3 ]
Parichy, David M. [1 ,4 ]
机构
[1] Univ Virginia, Dept Biol, Charlottesville, VA 22903 USA
[2] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA
[3] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO USA
[4] Univ Virginia, Dept Cell Biol, Charlottesville, VA 22903 USA
[5] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
关键词
DICHROMATIC CHROMATOPHORES; CAROTENOID COLORATION; TELEOSTEI CYPRINIDAE; PIGMENT PATTERN; MATE CHOICE; STEM-CELLS; EVOLUTION; FISH; PTERIDINE; KIT;
D O I
10.7554/eLife.70253
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
引用
收藏
页数:23
相关论文
共 105 条
[1]   Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes [J].
Ansai, Satoshi ;
Mochida, Koji ;
Fujimoto, Shingo ;
Mokodongan, Daniel F. ;
Sumarto, Bayu Kreshna Adhitya ;
Masengi, Kawilarang W. A. ;
Hadiaty, Renny K. ;
Nagano, Atsushi J. ;
Toyoda, Atsushi ;
Naruse, Kiyoshi ;
Yamahira, Kazunori ;
Kitano, Jun .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   PRESENCE OF MELANOSOME-LIKE GRANULES IN DERMAL ERYTHROPHORES OF TROPICAL TELEOST (BADIS-BADIS) [J].
ASADA, M .
EXPERIENTIA, 1978, 34 (04) :511-512
[3]  
Bagnara J T., 2006, The pigmentary system: physiology and pathophysiology, P11, DOI DOI 10.1002/9780470987100.CH2
[4]  
Ballowitz E, 1913, Z WISS ZOOL ABT A, V106, P527
[5]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[6]   DIFFERENTIAL AVOIDANCE OF MIMETIC SALAMANDERS BY FREE-RANGING BIRDS [J].
BRODIE, ED ;
BRODIE, ED .
SCIENCE, 1980, 208 (4440) :181-182
[7]   Post-Embryonic Nerve-Associated Precursors to Adult Pigment Cells: Genetic Requirements and Dynamics of Morphogenesis and Differentiation [J].
Budi, Erine H. ;
Patterson, Larissa B. ;
Parichy, David M. .
PLOS GENETICS, 2011, 7 (05)
[8]   Coloration in Mammals [J].
Caro, Tim ;
Mallarino, Ricardo .
TRENDS IN ECOLOGY & EVOLUTION, 2020, 35 (04) :357-366
[9]   Phaeomelanin matters: Redness associates with inter-individual differences in behaviour and feather corticosterone in male scops owls (Otus scops) [J].
Cruz-Miralles, Angel ;
Aviles, Jesus M. ;
Chastel, Olivier ;
Exposito-Granados, Monica ;
Parejo, Deseada .
PLOS ONE, 2020, 15 (11)
[10]   Color polymorphism and intrasexual competition in assemblages of cichlid fish [J].
Dijkstra, Peter D. ;
Hemelrijk, Charlotte ;
Seehausen, Ole ;
Groothuis, Ton G. G. .
BEHAVIORAL ECOLOGY, 2009, 20 (01) :138-144