On spline collocation and the Hilbert transform

被引:0
作者
Micula, Sanda [1 ]
机构
[1] Univ Babes Bolyai, Dept Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Spline collocation; Hilbert transform; Fourier analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine a relationship between the spline collocation projection operator pi(n) and the Hilbert singular integral operator H-0. We use Fourier analysis to prove that under certain conditions, a commutator property holds between the two operators. More specifically, we show that for u is an element of H-t, parallel to(pi H-n(0) - H-0 pi(n))u parallel to t <= Ch(lambda)parallel to u parallel to(s) (where h = 1/n), for some t,s and lambda is an element of R.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 12 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], HDB OF SPLINES
[3]   A spline collocation method for parabolic pseudodifferential equations [J].
Anttila, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :41-61
[4]   THE CONVERGENCE OF SPLINE COLLOCATION FOR STRONGLY ELLIPTIC-EQUATIONS ON CURVES [J].
ARNOLD, DN ;
WENDLAND, WL .
NUMERISCHE MATHEMATIK, 1985, 47 (03) :317-341
[5]   Nonlinear Riemann-Hilbert problems with Lipschitz-continuous boundary data: doubly connected domains [J].
Efendiev, MA ;
Wendland, WL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2032) :945-955
[6]   ADDITIONAL ORDER CONVERGENCE IN QUALOCATION FOR ELLIPTIC BOUNDARY INTEGRAL EQUATIONS [J].
Grigorieff, R. D. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2011, 23 (03) :383-419
[7]  
KING FW, 2009, HILBERT TRANSFORMS, P1
[8]  
Micula S., 2005, MATH BALKANICA, V19, P155
[9]  
Micula S, 2006, STUD U BABES-BOL MAT, V51, P138
[10]   SPLINE APPROXIMATION METHODS FOR MULTIDIMENSIONAL PERIODIC PSEUDODIFFERENTIAL-EQUATIONS [J].
PROSSDORF, S ;
SCHNEIDER, R .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (04) :626-672