Stability window of trapless polariton Bose-Einstein condensates

被引:2
|
作者
Sabari, S. [1 ,2 ]
Kumar, R. Kishor [3 ,4 ]
Radha, R. [2 ]
Muruganandam, P. [5 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Theoret Phys, BR-01156970 Sao Paulo, SP, Brazil
[2] Govt Coll Women, Dept Phys, Ctr Nonlinear Sci CeNSc, Kumbakonam 612001, India
[3] Univ Otago, Dept Phys, Ctr Quantum Sci, Dunedin 9054, New Zealand
[4] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9054, New Zealand
[5] Bharathidasan Univ, Dept Phys, Tiruchirappalli 620024, India
基金
巴西圣保罗研究基金会;
关键词
SOLITONS;
D O I
10.1103/PhysRevB.105.224315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates (pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii equation and derive the equation of motion for the amplitude and width of the condensate. These variational results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained through the variational approach are then solved by numerical simulations through the fourth-order Runge-Kutta method, which are further supported by the split-step Crank-Nicholson method, thereby setting the platform for stable pBECs. In particular, we generate a window containing system parameters in the g(1) - gamma(eff) space within which the system can admit stable condensates. The highlight of the results is that one observes beating effects in the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates, one notices the stretching of the density.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Domain wall dynamics in the spinor Bose-Einstein condensates
    Kuratsuji, Hiroshi
    EPL, 2021, 133 (04)
  • [22] Magnetic solitons in binary mixtures of Bose-Einstein condensates
    Pitaevskii, Lev P.
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2019, 30 (02) : 269 - 276
  • [23] Faraday waves in binary nonmiscible Bose-Einstein condensates
    Balaz, Antun
    Nicolin, Alexandru I.
    PHYSICAL REVIEW A, 2012, 85 (02)
  • [24] Faraday waves in collisionally inhomogeneous Bose-Einstein condensates
    Balaz, Antun
    Paun, Remus
    Nicolin, Alexandru I.
    Balasubramanian, Sudharsan
    Ramaswamy, Radha
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [25] Pattern forming dynamical instabilities of Bose-Einstein condensates
    Kevrekidis, PG
    Frantzeskakis, DJ
    MODERN PHYSICS LETTERS B, 2004, 18 (5-6): : 173 - 202
  • [26] Nonlinear waves in coherently coupled Bose-Einstein condensates
    Congy, T.
    Kamchatnov, A. M.
    Pavloff, N.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [27] Atomic Bose-Einstein condensates as nonlinear hyperbolic metamaterials
    Sedov, E. S.
    Charukhchyan, M. V.
    Arakelian, S. M.
    Alodjants, A. P.
    Chuang, You-Lin
    Lee, Ray-Kuang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2015, 2015, : 289 - 294
  • [28] VORTEX INTERACTION DYNAMICS IN TRAPPED BOSE-EINSTEIN CONDENSATES
    Torres, Pedro J.
    Carretero-Gonzalez, R.
    Middelkamp, S.
    Schmelcher, P.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1589 - 1615
  • [29] Analogues of D-branes in Bose-Einstein condensates
    Kasamatsu, Kenichi
    Takeuchi, Hiromitsu
    Nitta, Muneto
    Tsubota, Makoto
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11):
  • [30] Trapped Bose-Einstein condensates in the presence of a current nonlinearity
    Saleh, Mohammed F.
    Ohberg, Patrik
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2018, 51 (04)