Numerical resolution of an "unbalanced" mass transport problem

被引:55
作者
Benamou, JD [1 ]
机构
[1] INRIA Rocquencourt, F-78153 Le Chesnay, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2003年 / 37卷 / 05期
关键词
Monge-Kantorovitch problem; Wasserstein distance; augmented Lagrangian method;
D O I
10.1051/m2an:2003058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a modification of the Monge-Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this "unbalanced" problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
引用
收藏
页码:851 / 868
页数:18
相关论文
共 41 条
[1]   A COMPETITIVE (DUAL) SIMPLEX-METHOD FOR THE ASSIGNMENT PROBLEM [J].
BALINSKI, ML .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :125-141
[2]   On a reverse form of the Brascamp-Lieb inequality [J].
Barthe, F .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :335-361
[3]   Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem [J].
Benamou, JD ;
Brenier, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (05) :1450-1461
[4]   A DOMAIN DECOMPOSITION METHOD FOR THE POLAR FACTORIZATION OF VECTOR-VALUED MAPPINGS [J].
BENAMOU, JD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1808-1838
[5]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[6]  
BENAMOU JD, RR4022 INRIA
[7]  
BENAMOU JD, UNPUB MIXED L2 WASSE
[8]  
BENAMOU JD, 1992, 1 EUR C COMP FLUID D
[9]   Shape optimization solutions via Monge-Kantorovich equation [J].
Bouchitte, G ;
Buttazzo, G ;
Seppecher, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (10) :1185-1191
[10]  
Brenier Y, 1999, COMMUN PUR APPL MATH, V52, P411, DOI 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO