ON A DELAYED EPIDEMIC MODEL WITH NON-INSTANTANEOUS IMPULSES

被引:30
作者
Bai, Liang [1 ]
Nieto, Juan J. [2 ,3 ]
Uzal, Jose M. [2 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Univ Santiago de Compostela, Fac Matemat, Dept Estat Analise Matemat & Optimizac, Santiago De Compostela 15782, Spain
[3] Univ Santiago de Compostela, Fac Matemat, Inst Matemat, Santiago De Compostela 15782, Spain
基金
中国国家自然科学基金;
关键词
SEIRS epidemic model; pulse vaccination; global attractiveness; permanence; non-instantaneous impulses; DIFFERENTIAL-EQUATIONS; VARIATIONAL APPROACH; VACCINATION; STABILITY;
D O I
10.3934/cpaa.2020084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a non-instantaneous pulse vaccination model. Non-instantaneous impulsive nonlinear differential equations provide an adequate biomathematical model of some medical problems. In this paper we study some basic properties such as the attractiveness of the infection-free periodic solution and the permanence of some sub-population for a vaccine model where a constant fraction of the susceptible population is vaccinated in some periodic way. Our model is a system of nonlinear differential equations with impulses.
引用
收藏
页码:1915 / 1930
页数:16
相关论文
共 24 条
[1]  
Agarwal R.P., 2017, NONINSTANTANEOUS IMP
[2]   Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions [J].
Agarwal, Ravi ;
Hristova, S. ;
O'Regan, D. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (07) :3097-3119
[3]  
[Anonymous], 1989, THEORY IMPULSIVE DIF
[4]   Variational approach to non-instantaneous impulsive nonlinear differential equations [J].
Bai, Liang ;
Nieto, Juan J. ;
Wang, Xiaoyun .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05) :2440-2448
[5]   Variational approach to differential equations with not instantaneous impulses [J].
Bai, Liang ;
Nieto, Juan J. .
APPLIED MATHEMATICS LETTERS, 2017, 73 :44-48
[6]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, V66
[7]   Semilinear fractional differential equations with infinite delay and non-instantaneous impulses [J].
Benchohra, Mouffak ;
Litimein, Sara ;
Nieto, Juan J. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)
[8]  
Brauer F., 2012, MATH MODELS POPULATI, V2, DOI [10.1007/978-1-4614-1686-9, DOI 10.1007/978-1-4614-1686-9]
[9]   Analysis of an SEIRS epidemic model with two delays [J].
Cooke, KL ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :240-260
[10]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, V5