Translation stress and collided ribosomes are co-activators of cGAS

被引:58
|
作者
Wan, Li [1 ]
Juszkiewicz, Szymon [2 ]
Blears, Daniel [1 ,3 ]
Bajpe, Prashanth Kumar [1 ]
Han, Zhong [1 ,3 ]
Faull, Peter [4 ]
Mitter, Richard [5 ]
Stewart, Aengus [5 ]
Snijders, Ambrosius P. [2 ,4 ]
Hegde, Ramanujan S. [2 ]
Svejstrup, Jesper Q. [1 ,3 ]
机构
[1] Francis Crick Inst, Mech Transcript Lab, 1 Midland Rd, London NW1 1AT, England
[2] MRC Lab Mol Biol, Francis Crick Ave, Cambridge CB2 0QH, England
[3] Univ Copenhagen, Panum Inst, Dept Cellular & Mol Med, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
[4] Francis Crick Inst, Prot Anal & Prote Lab, 1 Midland Rd, London NW1 1AT, England
[5] Francis Crick Inst, Bioinformat & Biostat, 1 Midland Rd, London NW1 1AT, England
基金
英国医学研究理事会; 新加坡国家研究基金会; 英国惠康基金; 欧洲研究理事会;
关键词
CYCLIC GMP-AMP; QUALITY-CONTROL; PATTERN-RECOGNITION; STRUCTURAL BASIS; STING PATHWAY; DNA SENSOR; RNA; INTERFERON; COMPLEX; 2ND-MESSENGER;
D O I
10.1016/j.molcel.2021.05.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
引用
收藏
页码:2808 / +
页数:26
相关论文
共 50 条
  • [21] A signature motif in transcriptional co-activators mediates binding to nuclear receptors
    David M. Heery
    Eric Kalkhoven
    Susan Hoare
    Malcolm G. Parker
    Nature, 1997, 387 : 733 - 736
  • [22] Identification of a family of transcriptional co-activators for mammalian Notch receptors.
    Wu, LZ
    Kobayashi, K
    Griffin, JD
    BLOOD, 2001, 98 (11) : 830A - 830A
  • [23] A signature motif in transcriptional co-activators mediates binding to nuclear receptor
    Heery, DM
    Kalkhoven, E
    Hoare, S
    Parker, MG
    NATURE, 1997, 387 (6634) : 733 - 736
  • [24] Redox Control of Co-Activators and Repressors of MMP-1 Transcription
    Subbaram, Sita
    Melendez, J. Andres
    FREE RADICAL BIOLOGY AND MEDICINE, 2008, 45 : S39 - S39
  • [25] Redox control of co-activators and repressors of MMP-1 transcription
    Subbaram, Sita
    Melendez, Juan
    CANCER RESEARCH, 2009, 69
  • [27] How to control miRNA maturation? Co-activators and co-repressors take the stage
    Trabucchi, Michele
    Briata, Paola
    Filipowicz, Witold
    Rosenfeld, Michael G.
    Ramos, Andres
    Gherzi, Roberto
    RNA BIOLOGY, 2009, 6 (05) : 536 - 540
  • [28] Androgen receptor co-activators in the regulation of cellular events in prostate cancer
    Culig, Zoran
    Santer, Frederic R.
    WORLD JOURNAL OF UROLOGY, 2012, 30 (03) : 297 - 302
  • [29] Erratum: The TCL1 family of oncoproteins: co-activators of transformation
    Michael A. Teitell
    Nature Reviews Cancer, 2005, 5 : 750 - 750
  • [30] Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators
    Westin, S
    Kurokawa, R
    Nolte, RT
    Wisely, GB
    McInerney, EM
    Rose, DW
    Milburn, MV
    Rosenfeld, MG
    Glass, CK
    NATURE, 1998, 395 (6698) : 199 - 202