Dimension formula for the space of relative symmetric polynomials of Dn with respect to any irreducible representation

被引:0
作者
Radha, S. [1 ]
Vanchinathan, P. [1 ]
机构
[1] VIT Univ, Chennai 600127, Tamil Nadu, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Relative symmetric polynomials; dihedral groups; invariants; supercharacters;
D O I
10.1007/s12044-019-0531-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers d and n, the vector space H-d (x(1), x(2), ..., x(n)) of homogeneous polynomials of degree d is a representation of the symmetric group S-n acting by permutation of variables. Regarding this as a representation for the dihedral subgroup D-n, we prove a formula for the dimension of all the isotypical subrepresentations. Our formula is simpler than the existing one found by Zamani and Babaei (Bull. Iranian Math. Soc. 40(4) (2014) 863-874). By varying the degrees d we compute the generating functions for these dimensions. Further, our formula leads us naturally to a specific supercharacter theory of D-n. It turns out to be a *-product of a specific supercharacter theory studied in depth by Fowler et al. (The Ramanujan Journal (2014)), with the unique supercharacter theory of a group of order 2.
引用
收藏
页数:18
相关论文
共 13 条
[1]  
Babaei E, 2014, B IRAN MATH SOC, V40, P863
[2]   Symmetry Classes of Polynomials [J].
Babaei, Esmaeil ;
Zamani, Yousef ;
Shahryari, Mohammad .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) :1514-1530
[3]  
Diaconis P, 2008, T AM MATH SOC, V360, P2359
[4]   Ramanujan sums as supercharacters [J].
Fowler, Christopher F. ;
Garcia, Stephan Ramon ;
Karaali, Gizem .
RAMANUJAN JOURNAL, 2014, 35 (02) :205-241
[5]  
Hendrickson A. O. F., 2008, THESIS
[6]  
Lamar Jonathan P, 2018, THESIS, V60
[7]  
Ramanujan S., 1918, Trans. Cambridge Philos. Soc., V22, P259
[8]  
Serre J.-P., 1977, LINEAR REPRESENTATIO, V42
[9]   SYMMETRY CLASSES OF TENSORS ASSOCIATED WITH YOUNG SUBGROUPS [J].
Shahryari, M. ;
Zamani, Y. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (01) :179-185
[10]   Relative symmetric polynomials [J].
Shahryari, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) :1410-1421