0.1-μm InA1N/GaN High Electron-Mobility Transistors for Power Amplifiers Operating at 71-76 and 81-86 GHz: Impact of Passivation and Gate Recess

被引:11
作者
Xu, Dong [1 ]
Chu, Kanin [1 ]
Diaz, Jose A. [1 ]
Ashman, Michael D. [1 ]
Komiak, J. J. [1 ]
Pleasant, Louis M. Mt. [1 ]
Vera, Alice [1 ]
Seekell, Philip [1 ]
Yang, Xiaoping [1 ]
Creamer, Carlton [1 ]
Nichols, K. B. [1 ]
Duh, K. H. George [1 ]
Smith, Phillip M. [1 ]
Chao, P. C. [1 ]
Dong, Lin [2 ,3 ]
Ye, Peide D. [2 ]
机构
[1] BAE Syst, Microelect Ctr, Nashua, NH 03060 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Appl Mat Inc, Santa Clara, CA 94085 USA
关键词
Aluminum oxide (Al2O3); atomic layer deposition (ALD); GaN; high electron-mobility transistor (HEMT); InAlN; millimeter-wave (MMW) power amplifier (PA); passivation; HEMTS;
D O I
10.1109/TED.2016.2579160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed 0.1-mu m gate-length InAlN/GaN high electron-mobility transistors (HEMTs) for millimeter wave (MMW) power applications, particularly at 71-76 and 81-86 GHz bands. The impacts of depth and width of the gate recess groove on electrical performance have been analyzed and compared. Competing passivation technologies, atomic layer deposition (ALD) aluminum oxide (Al2O3) and plasma -enhanced chemical vapor deposition (PECVD) SiN, have also been assessed in terms of dc, pulsed-IV, and high-frequency characteristics. It has been found that while PECVD SiN-passivated HEMTs and the monolithic microwave integrated circuits slightly under perform their ALD Al2O3-passivated counterparts, their MMW power performance can be further boosted with the gate recess due to the improved aspect ratio and scaling characteristics. When biased at a drain voltage of 10 V, a first -pass two -stage power amplifier design based on recessed PECVD SiN-passivated 0.1-mu m depletion-mode devices has demonstrated an output power of 1.63 W with a 15% power -added efficiency at 86 GHz.
引用
收藏
页码:3076 / 3083
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2012, IEEE MTT S INT MICRO
[2]  
[Anonymous], P INT MICR S SEATTL
[3]  
[Anonymous], P INT C IND PHOSPH R
[4]  
[Anonymous], P IEEE INT EL DEV M
[5]  
[Anonymous], P LEST EASTM BIENN C
[6]  
Brown A., 2011, MICROWAVE S DIGEST M, P1, DOI DOI 10.1109/MWSYM.2011.5972571
[7]   High-Power Ka-Band Performance of AlInN/GaN HEMT With 9.8-nm-Thin Barrier [J].
Crespo, A. ;
Bellot, M. M. ;
Chabak, K. D. ;
Gillespie, J. K. ;
Jessen, G. H. ;
Miller, V. ;
Trejo, M. ;
Via, G. D. ;
Walker, D. E., Jr. ;
Winningham, B. W. ;
Smith, H. E. ;
Cooper, T. A. ;
Gao, X. ;
Guo, S. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) :2-4
[8]  
Micovic M, 2010, IEEE MTT S INT MICR, P237, DOI 10.1109/MWSYM.2010.5516911
[9]   E-band 85-mW Oscillator and 1.3-W Amplifier ICs using 0.12-μm GaN HEMTs for Millimeter-wave Transceivers [J].
Nakasha, Yasuhiro ;
Masuda, Satoshi ;
Makiyama, Kozo ;
Ohki, Toshihiro ;
Kanamura, Masahito ;
Okamoto, Naoya ;
Tajima, Tatsuhiko ;
Seino, Takehiro ;
Shigematsu, Hisao ;
Imanishi, Kenji ;
Kikkawa, Toshihide ;
Joshin, Kazukiyo ;
Hara, Naoki .
2010 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS), 2010,
[10]  
Oh JH, 2004, J KOREAN PHYS SOC, V45, P1004