Experimental quantum process tomography of non-trace-preserving maps

被引:57
作者
Bongioanni, Irene [1 ]
Sansoni, Linda [1 ]
Sciarrino, Fabio [1 ,2 ]
Vallone, Giuseppe [1 ,3 ,4 ]
Mataloni, Paolo [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Ott INO CNR, I-50125 Florence, Italy
[3] Museo Stor Fis, I-00184 Rome, Italy
[4] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 04期
关键词
FIDELITY;
D O I
10.1103/PhysRevA.82.042307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ability of fully reconstructing quantum maps is a fundamental task of quantum information, in particular when coupling with the environment and experimental imperfections of devices are taken into account. In this context, we carry out a quantum process tomography approach for a set of non-trace-preserving maps. We introduce an operator P to characterize the state-dependent probability of success for the process under investigation. We also evaluate the result of approximating the process with a trace-preserving one.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[2]   Realization of quantum process tomography in NMR [J].
Childs, AM ;
Chuang, IL ;
Leung, DW .
PHYSICAL REVIEW A, 2001, 64 (01) :123141-123147
[3]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[4]   Imprinting complete information about a quantum channel on its output state [J].
D'Ariano, GM ;
Lo Presti, P .
PHYSICAL REVIEW LETTERS, 2003, 91 (04)
[5]   Distance measures to compare real and ideal quantum processes [J].
Gilchrist, A ;
Langford, NK ;
Nielsen, MA .
PHYSICAL REVIEW A, 2005, 71 (06)
[6]   Quantum process tomography and Linblad estimation of a solid-state qubit [J].
Howard, M ;
Twamley, J ;
Wittmann, C ;
Gaebel, T ;
Jelezko, F ;
Wrachtrup, J .
NEW JOURNAL OF PHYSICS, 2006, 8
[7]   Measurement of qubits [J].
James, DFV ;
Kwiat, PG ;
Munro, WJ ;
White, AG .
PHYSICAL REVIEW A, 2001, 64 (05) :15-523121
[8]  
Jamiolkowski A., 1972, Rep. Math. Phys., V3, P275, DOI DOI 10.1016/0034-4877(72)90011-0
[9]   Quantum inference of states and processes -: art. no. 012305 [J].
Jezek, M ;
Fiurásek, J ;
Hradil, Z .
PHYSICAL REVIEW A, 2003, 68 (01) :7
[10]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323