Vortex lattice solitons supported by localized gain

被引:19
作者
Kartashov, Yaroslav V. [3 ,4 ]
Konotop, Vladimir V. [1 ,2 ]
Vysloukh, Victor A. [3 ,4 ]
Torner, Lluis [3 ,4 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Dept Fis, P-1649003 Lisbon, Portugal
[3] Univ Politecn Cataluna, Barcelona 08860, Spain
[4] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
关键词
SPATIAL SOLITONS; VORTICES;
D O I
10.1364/OL.35.003177
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that localized gain supports the existence of dissipative vortex solitons in periodic Kerr media with strong two-photon absorption. Vortex solitons exist in both focusing and defocusing media, with their propagation constants emerging from semi-infinite or finite gaps in the lattice spectrum. Coincidence of the discrete rotational symmetries of the gain landscape and refractive index distribution is a necessary condition for exciting vortex solitons, which otherwise transform into stable dissipative multipoles. (C) 2010 Optical Society of America
引用
收藏
页码:3177 / 3179
页数:3
相关论文
共 16 条
[1]   Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICAL REVIEW E, 2001, 63 (01)
[2]   Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICS LETTERS A, 2001, 289 (1-2) :59-65
[3]   Optical vortices and vortex solitons [J].
Desyatnikov, AS ;
Kivshar, YS ;
Torner, L .
PROGRESS IN OPTICS, VOL 47, 2005, 47 :291-391
[4]   Observation of vortex-ring "discrete" solitons in 2D photonic lattices [J].
Fleischer, JW ;
Bartal, G ;
Cohen, O ;
Manela, O ;
Segev, M ;
Hudock, J ;
Christodoulides, DN .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :123904-1
[5]   Gap vortex solitons in periodic media with quadratic nonlinearity [J].
Hang, Chao ;
Konotop, Vladimir V. ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2009, 80 (02)
[6]   Dissipative defect modes in periodic structures [J].
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2010, 35 (10) :1638-1640
[7]   Soliton topology versus discrete symmetry in optical lattices [J].
Kartashov, YV ;
Ferrando, A ;
Egorov, AA ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)
[8]   SPATIAL SOLITONS IN A SELF-FOCUSING SEMICONDUCTOR GAIN MEDIUM [J].
KHITROVA, G ;
GIBBS, HM ;
KAWAMURA, Y ;
IWAMURA, H ;
IKEGAMI, T ;
SIPE, JE ;
MING, L .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :920-923
[9]   Spatial solitons supported by localized gain in nonlinear optical waveguides [J].
Lam, C. -K. ;
Malomed, B. A. ;
Chow, K. W. ;
Wai, P. K. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 :233-243
[10]   Stable vortex solitons in the Ginzburg-Landau model of a two-dimensional lasing medium with a transverse grating [J].
Leblond, Herve ;
Malomed, Boris A. ;
Mihalache, Dumitru .
PHYSICAL REVIEW A, 2009, 80 (03)