Octonions in random matrix theory

被引:1
作者
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Frontiers, Melbourne, Vic 3010, Australia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2200期
基金
澳大利亚研究理事会;
关键词
random matrices; octonions; Jordan algebras; STATISTICAL THEORY; COMPLEX SYSTEMS; DYSON PROCESSES; ENERGY LEVELS; DISTRIBUTIONS; MODELS; CONES;
D O I
10.1098/rspa.2016.0800
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random matrices by symmetry considerations. Only for N = 2 is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for N = 3. We then proceed to consider the matrix structure X+X, when X has random octonion entries. Analytic results are obtained from N = 2, but are observed to break down in the 3 x 3 case.
引用
收藏
页数:11
相关论文
共 32 条
[11]   Matrix models for beta ensembles [J].
Dumitriu, I ;
Edelman, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5830-5847
[12]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[13]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[14]  
Hurwitz A, 1923, MATH ANN, V88, P1
[15]  
Hurwitz A., 1897, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, V1897, P71
[17]   Random matrix theory, the exceptional Lie groups and L-functions [J].
Keating, JP ;
Linden, N ;
Rudnick, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :2933-2944
[18]   Octonion hermitian quadrangles [J].
Kramer, L .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) :353-362
[19]   Dyson Processes on the Octonion Algebra [J].
Li, Songzi .
SEMINAIRE DE PROBABILITES XLVIII, 2016, 2168 :401-421