Likelihood Identification of High-Beta Disruption in JT-60U

被引:7
作者
Yokoyama, Tatsuya [1 ,2 ]
Yamada, Hiroshi [1 ]
Isayama, Akihiko [3 ]
Hiwatari, Ryoji [4 ]
Ide, Shunsuke [3 ]
Matsunaga, Go [3 ]
Miyoshi, Yuya [4 ]
Oyama, Naoyuki [3 ]
Imagawa, Naoto [1 ]
Igarashi, Yasuhiko [5 ,6 ]
Okada, Masato [1 ]
Ogawa, Yuichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan
[2] Japan Soc Promot Sci, Tokyo 1020083, Japan
[3] Natl Inst Quantum & Radiol Sci & Technol, Naka Fus Inst, Naka, Ibaraki 3110193, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, Rokkasho Fus Inst, Rokkasho 0393212, Japan
[5] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki 3058573, Japan
[6] PRESTO, Japan Sci & Technol Agcy, Kawaguchi, Saitama 3320012, Japan
关键词
tokamak; JT-60U; disruption prediction; sparse modeling; machine learning; PREDICTION; PLASMAS;
D O I
10.1585/pfr.16.1402073
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Prediction and likelihood identification of high-beta disruption in JT-60U has been discussed by means of feature extraction based on sparse modeling. In disruption prediction studies using machine learning, the selection of input parameters is an essential issue. A disruption predictor has been developed by using a linear support vector machine with input parameters selected through an exhaustive search, which is one idea of sparse modeling. The investigated dataset includes not only global plasma parameters but also local parameters such as ion temperature and plasma rotation. As a result of the exhaustive search, five physical parameters, i.e., normalized beta beta(N), plasma elongation kappa, ion temperature T-i and magnetic shear s at the q = 2 rational surface, have been extracted as key parameters of high-beta disruption. The boundary between the disruptive and the non-disruptive zones in multidimensional space has been defined as the power law expression with these key parameters. Consequently, the disruption likelihood has been quantified in terms of probability based on this boundary expression. Careful deliberation of the expression of the disruption likelihood, which is derived with machine learning, could lead to the elucidation of the underlying physics behind disruptions. (C) 2021 The Japan Society of Plasma Science and Nuclear Fusion Research
引用
收藏
页数:7
相关论文
共 24 条
[1]   Theory of tokamak disruptions [J].
Boozer, Allen H. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[2]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[3]   Statistical analysis of disruptions in JET [J].
de Vries, P. C. ;
Johnson, M. F. ;
Segui, I. .
NUCLEAR FUSION, 2009, 49 (05)
[4]   Disruptions, disruptivity and safer operating windows in the high-β spherical torus NSTX [J].
Gerhardt, S. P. ;
Bell, R. E. ;
Diallo, A. ;
Gates, D. ;
LeBlanc, B. P. ;
Menard, J. E. ;
Mueller, D. ;
Sabbagh, S. A. ;
Soukhanovskii, V. ;
Tritz, K. ;
Yuh, H. .
NUCLEAR FUSION, 2013, 53 (04)
[5]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202
[6]   SENSITIVITY OF THE KINK INSTABILITY TO THE PRESSURE PROFILE [J].
HOWL, W ;
TURNBULL, AD ;
TAYLOR, TS ;
LAO, LL ;
HELTON, FJ ;
FERRON, JR ;
STRAIT, EJ .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :1724-1734
[7]  
Igarashi Yasuhiko, 2018, Journal of Physics: Conference Series, V1036, DOI 10.1088/1742-6596/1036/1/012001
[8]  
ISHIDA S, 1993, P S IAEA, P219
[9]   Predicting disruptive instabilities in controlled fusion plasmas through deep learning [J].
Kates-Harbeck, Julian ;
Svyatkovskiy, Alexey ;
Tang, William .
NATURE, 2019, 568 (7753) :526-+
[10]  
Lawless Jerald F, 2011, STAT MODELS METHODS, V362