Synthesis of functional microcapsules containing suspensions responsive to electric fields

被引:38
作者
Guo, HL [1 ]
Zhao, XP [1 ]
Wang, JP [1 ]
机构
[1] Northwestern Polytech Univ, Inst Electrorheol Technol, Dept Appl Phys, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
microcapsules; suspension; contact angled; interfacial tension; electric response;
D O I
10.1016/j.jcis.2004.10.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A sort of functional microcapsules, which contain a suspension responsive to electric fields, is prepared by in situ polymerization of urea and formaldehyde. The suspension is made up of pigment phthalocyanine green (PPG) and tetrachloroethylene. In order to solve the particles separation from the suspension during the microencapsulation and to obtain microcapsules applying to electronic ink display, the dispersibility of the particles, the contact angles between the particles and the tetrachloroethylene, and the influences of different emulsifiers on the microencapsulation are investigated. It is found that the dispersion extent and lipophilicity of the PPG particles are improved due to their surface modification with octadecylamine. The contact angles between the modified PPG particles and the tetrachloroethylene increase, and the PPG particles modified with 2 wt% octadecylamine have the best affinity for tetrachloroethylene. The interfacial tension between C2Cl4 and H2O with urea-formaldehyde prepolymer descends from 43 to 35 mN/m, which indicates that the polymer has certain surface activity. However, water-soluble emulsifiers have an important influence during the microencapsulation because they can absorb on the surfaces of internal phase and prevent the resin of urea-formaldehyde from depositing there. From the SEM images of shell surface and cross section, the microcapsules have relatively smooth surfaces and the average thickness is about 4.5 mu m. When the microcapsules are prepared with agitation rates of 1000 and 600 rpm, the mean diameters of the obtained microcapsules are 11 and 155 mu m, respectively. The particles in the capsules move toward positive electrode with a responsive time of several hundred milliseconds while providing an electric field. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:646 / 651
页数:6
相关论文
共 38 条
[1]   Determination of the wettability of a solid by a liquid - Relation of adhesion tension to stability of color varnish and lacquer systems [J].
Bartell, FE ;
Osterhof, HJ .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1927, 19 (01) :1277-1280
[2]   In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene [J].
Brown, EN ;
Kessler, MR ;
Sottos, NR ;
White, SR .
JOURNAL OF MICROENCAPSULATION, 2003, 20 (06) :719-730
[3]  
Chang SJ, 1999, J BIOMAT SCI-POLYM E, V10, P531
[4]   Flexible active-matrix electronic ink display [J].
Chen, Y ;
Au, J ;
Kazlas, P ;
Ritenour, A ;
Gates, H ;
McCreary, M .
NATURE, 2003, 423 (6936) :136-136
[5]  
Chu LY, 2002, ADV MATER, V14, P386, DOI 10.1002/1521-4095(20020304)14:5<386::AID-ADMA386>3.0.CO
[6]  
2-I
[7]   Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules [J].
Chu, LY ;
Park, SH ;
Yamaguchi, T ;
Nakao, S .
LANGMUIR, 2002, 18 (05) :1856-1864
[8]   Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates [J].
Chu, LY ;
Park, SH ;
Yamaguchi, T ;
Nakao, S .
JOURNAL OF MEMBRANE SCIENCE, 2001, 192 (1-2) :27-39
[9]   An electrophoretic ink for all-printed reflective electronic displays [J].
Comiskey, B ;
Albert, JD ;
Yoshizawa, H ;
Jacobson, J .
NATURE, 1998, 394 (6690) :253-255
[10]   Electrochemistry and microsystems [J].
Ehrfeld, W .
ELECTROCHIMICA ACTA, 2003, 48 (20-22) :2857-2868