Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes

被引:14
作者
Siino, Marianna [1 ]
Adelfio, Giada [1 ,2 ]
Mateu, Jorge [3 ]
机构
[1] Univ Palermo, Dipartimento Sci Econ Aziendali & Stat, Palermo, Italy
[2] Ctr Nazl Terremoti, Ist Nazl Geofis & Vulcanol, Rome, Italy
[3] Univ Jaume 1, Dept Math, Castellon De La Plana, Castellon, Spain
关键词
Earthquakes; Log-Gaussian Cox processes; Minimum contrast method; Non-separable covariance function; Spatio-temporal pair correlation function; 2-STEP ESTIMATION; POINT; MODELS; PREDICTION; SELECTION; PACKAGE; DISEASE;
D O I
10.1007/s00477-018-1579-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new fitting method to estimate the set of second-order parameters for the class of homogeneous spatio-temporal log-Gaussian Cox point processes. With simulations, we show that the proposed minimum contrast procedure, based on the spatio-temporal pair correlation function, provides reliable estimates and we compare the results with the current available methods. Moreover, the proposed method can be used in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. We describe earthquake sequences comparing several Cox model specifications.
引用
收藏
页码:3525 / 3539
页数:15
相关论文
共 48 条
  • [31] Structured Spatio-Temporal Shot-Noise Cox Point Process Models, with a View to Modelling Forest Fires
    Moller, Jesper
    Diaz-Avalos, Carlos
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (01) : 2 - 25
  • [32] Seismomatics
    Porcu, Emilio
    Fasso, Alessandro
    Barrientos, Sergio
    Catalan, Patricio A.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (07) : 1577 - 1582
  • [33] Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes
    Prokeova, Michaela
    Dvorak, Jiri
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (02) : 433 - 449
  • [34] Two-step estimation procedures for inhomogeneous shot-noise Cox processes
    Prokesova, Michaela
    Dvorak, Jiri
    Jensen, Eva B. Vedel
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (03) : 513 - 542
  • [35] 2ND-ORDER ANALYSIS OF STATIONARY POINT PROCESSES
    RIPLEY, BD
    [J]. JOURNAL OF APPLIED PROBABILITY, 1976, 13 (02) : 255 - 266
  • [36] Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance
    Rodrigues, Alexandre
    Diggle, Peter J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 93 - 101
  • [37] A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure
    Rodrigues, Alexandre
    Diggle, Peter J.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) : 553 - 567
  • [38] Schlather M, 2015, J STAT SOFTW, V63, P1
  • [39] Consistent parametric estimation of the intensity of a spatial-temporal point process
    Schoenberg, FP
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 79 - 93
  • [40] Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994-2008
    Serra, Laura
    Saez, Marc
    Mateu, Jorge
    Varga, Diego
    Juan, Pablo
    Diaz-Avalos, Carlos
    Rue, Havard
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 531 - 563