Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes

被引:14
作者
Siino, Marianna [1 ]
Adelfio, Giada [1 ,2 ]
Mateu, Jorge [3 ]
机构
[1] Univ Palermo, Dipartimento Sci Econ Aziendali & Stat, Palermo, Italy
[2] Ctr Nazl Terremoti, Ist Nazl Geofis & Vulcanol, Rome, Italy
[3] Univ Jaume 1, Dept Math, Castellon De La Plana, Castellon, Spain
关键词
Earthquakes; Log-Gaussian Cox processes; Minimum contrast method; Non-separable covariance function; Spatio-temporal pair correlation function; 2-STEP ESTIMATION; POINT; MODELS; PREDICTION; SELECTION; PACKAGE; DISEASE;
D O I
10.1007/s00477-018-1579-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new fitting method to estimate the set of second-order parameters for the class of homogeneous spatio-temporal log-Gaussian Cox point processes. With simulations, we show that the proposed minimum contrast procedure, based on the spatio-temporal pair correlation function, provides reliable estimates and we compare the results with the current available methods. Moreover, the proposed method can be used in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. We describe earthquake sequences comparing several Cox model specifications.
引用
收藏
页码:3525 / 3539
页数:15
相关论文
共 48 条
  • [1] Alternated estimation in semi-parametric space-time branching-type point processes with application to seismic catalogs
    Adelfio, Giada
    Chiodi, Marcello
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (02) : 443 - 450
  • [2] A space-time point process model for analyzing and predicting case patterns of diarrheal disease in northwestern Ecuador
    Ahn, Jaeil
    Johnson, Timothy D.
    Bhavnani, Darlene
    Eisenberg, Joseph N. S.
    Mukherjee, Bhramar
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2014, 9 : 23 - 35
  • [3] [Anonymous], 2005, R LANG ENV STAT COMP
  • [4] Benes V., 2011, Image Analysis Stereology, V24, P159, DOI DOI 10.5566/IAS.V24.P159-168
  • [5] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [6] COX DR, 1955, J ROY STAT SOC B, V17, P129
  • [7] Selection of Time Windows in the Horizontal-to-Vertical Noise Spectral Ratio by Means of Cluster Analysis
    D'Alessandro, A.
    Luzio, D.
    Martorana, R.
    Capizzi, P.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2016, 106 (02) : 560 - 574
  • [8] Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes
    Davies, Tilman M.
    Hazelton, Martin L.
    [J]. STATISTICA NEERLANDICA, 2013, 67 (04) : 355 - 389
  • [9] FORTRAN programs for space-time modeling
    De Cesare, L
    Myers, DE
    Posa, D
    [J]. COMPUTERS & GEOSCIENCES, 2002, 28 (02) : 205 - 212
  • [10] Nonseparable space-time covariance models: Some parametric families
    De Iaco, S
    Myers, DE
    Posa, D
    [J]. MATHEMATICAL GEOLOGY, 2002, 34 (01): : 23 - 42