A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction

被引:18
作者
Peng, Jun [1 ]
Zheng, Zhiyong [2 ]
Zhang, Xiaoyong [1 ]
Deng, Kunyuan [2 ]
Gao, Kai [3 ]
Li, Heng [2 ]
Chen, Bin [2 ]
Yang, Yingze [1 ]
Huang, Zhiwu [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; remaining useful life; gradient boosting decision trees; the box-cox transformation; time window; particle swarm optimization; OF-HEALTH ESTIMATION; CYCLE LIFE; STATE; MODEL; PROGNOSTICS;
D O I
10.3390/en13030752
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Data-driven methods are widely applied to predict the remaining useful life (RUL) of lithium-ion batteries, but they generally suffer from two limitations: (i) the potentials of features are not fully exploited, and (ii) the parameters of the prediction model are difficult to determine. To address this challenge, this paper proposes a new data-driven method using feature enhancement and adaptive optimization. First, the features of battery aging are extracted online. Then, the feature enhancement technologies, including the box-cox transformation and the time window processing, are used to fully exploit the potential of features. The box-cox transformation can improve the correlation between the features and the aging status of the battery, and the time window processing can effectively exploit the time information hidden in the historical features sequence. Based on this, gradient boosting decision trees are used to establish the RUL prediction model, and the particle swarm optimization is used to adaptively optimize the model parameters. This method was applied on actual lithium-ion battery degradation data, and the experimental results show that the proposed model is superior to traditional prediction methods in terms of accuracy.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Remaining useful life prediction of lithium-ion battery with nonparametric degradation modeling and incomplete data
    Li, Naipeng
    Wang, Mingyang
    Lei, Yaguo
    Yang, Bin
    Li, Xiang
    Si, Xiaosheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256
  • [42] A novel feature adaptive meta-model for efficient remaining useful life prediction of lithium-ion batteries
    Rai, Amit
    Liu, Jay
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [43] PFFN: A Parallel Feature Fusion Network for Remaining Useful Life Early Prediction of Lithium-Ion Battery
    Dong, Zhekang
    Yang, Mengjie
    Wang, Junfan
    Wang, Hao
    Lai, Chun Sing
    Ji, Xiaoyue
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 2696 - 2706
  • [44] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [45] A data and physical model joint driven method for lithium-ion battery remaining useful life prediction under complex dynamic conditions
    Ren, Yi
    Tang, Ting
    Xia, Quan
    Zhang, Kun
    Tian, Jun
    Hu, Daozhong
    Yang, Dezhen
    Sun, Bo
    Feng, Qiang
    Qian, Cheng
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [46] Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization
    Zhao, Bo
    Zhang, Weige
    Zhang, Yanru
    Zhang, Caiping
    Zhang, Chi
    Zhang, Junwei
    APPLIED ENERGY, 2025, 379
  • [47] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Peng, Yanfeng
    Cheng, Junsheng
    Liu, Yanfei
    Li, Xuejun
    Peng, Zhihua
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) : 301 - 310
  • [48] Simulator Assessment Theory for Remaining Useful Life Prediction of Lithium-Ion Battery Under Multiple Uncertainties
    Zhao, Liang
    Li, Qiang
    Suo, Bin
    IEEE ACCESS, 2020, 8 : 71447 - 71459
  • [49] An interpretable online prediction method for remaining useful life of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Ye, Yifu
    Cai, Zhiduan
    Zhen, Aigang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Remaining useful life Prediction for lithium-ion battery based on CEEMDAN and SVR
    Shi, Yuanhao
    Yang, Yanru
    Wen, Jie
    Cui, Fangshu
    Wang, Jingcheng
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 888 - 893