A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction

被引:18
作者
Peng, Jun [1 ]
Zheng, Zhiyong [2 ]
Zhang, Xiaoyong [1 ]
Deng, Kunyuan [2 ]
Gao, Kai [3 ]
Li, Heng [2 ]
Chen, Bin [2 ]
Yang, Yingze [1 ]
Huang, Zhiwu [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; remaining useful life; gradient boosting decision trees; the box-cox transformation; time window; particle swarm optimization; OF-HEALTH ESTIMATION; CYCLE LIFE; STATE; MODEL; PROGNOSTICS;
D O I
10.3390/en13030752
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Data-driven methods are widely applied to predict the remaining useful life (RUL) of lithium-ion batteries, but they generally suffer from two limitations: (i) the potentials of features are not fully exploited, and (ii) the parameters of the prediction model are difficult to determine. To address this challenge, this paper proposes a new data-driven method using feature enhancement and adaptive optimization. First, the features of battery aging are extracted online. Then, the feature enhancement technologies, including the box-cox transformation and the time window processing, are used to fully exploit the potential of features. The box-cox transformation can improve the correlation between the features and the aging status of the battery, and the time window processing can effectively exploit the time information hidden in the historical features sequence. Based on this, gradient boosting decision trees are used to establish the RUL prediction model, and the particle swarm optimization is used to adaptively optimize the model parameters. This method was applied on actual lithium-ion battery degradation data, and the experimental results show that the proposed model is superior to traditional prediction methods in terms of accuracy.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [22] Data-driven Framework for Lithium-ion Battery Remaining Useful Life Estimation Based on Improved Nonlinear Degradation Factor
    Guo Limeng
    Pang Jingyue
    Liu Datong
    Peng Xiyuan
    PROCEEDINGS OF 2013 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2013, : 1014 - 1020
  • [23] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    APPLIED ENERGY, 2014, 118 : 114 - 123
  • [24] Feature selection and data-driven model for predicting the remaining useful life of lithium-ion batteries
    Zhang, Yuhao
    Han, Yunfei
    Cai, Tao
    Xie, Jia
    Cheng, Shijie
    IET ENERGY SYSTEMS INTEGRATION, 2024, : 776 - 788
  • [25] A Nonlinear Prediction Method of Lithium-Ion Battery Remaining Useful Life Considering Recovery Phenomenon
    Zhang, Zhenyu
    Peng, Zhen
    Guan, Yong
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8674 - 8693
  • [26] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    SUSTAINABILITY, 2023, 15 (07)
  • [27] A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery
    Liu, Kailong
    Shang, Yunlong
    Ouyang, Quan
    Widanage, Widanalage Dhammika
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (04) : 3170 - 3180
  • [28] Short-Term Capacity Estimation and Long-Term Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Data-Driven Method
    Xia, Fei
    Chen, Xiang
    Chen, Jiajun
    JOURNAL OF ENERGY ENGINEERING, 2022, 148 (06)
  • [29] State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10854 - 10867
  • [30] A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries
    Ali, Muhammad Umair
    Zafar, Amad
    Masood, Haris
    Kallu, Karam Dad
    Khan, Muhammad Attique
    Tariq, Usman
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022