In-situ X-ray diffraction annealing study of electroplated and sputtered Cu-In-Ga precursors for application to sequential Cu(In,Ga)Se2 processes

被引:1
作者
Aninat, R. [1 ]
Hovestad, A. [1 ]
van Zelst, F. [1 ]
van den Bruele, F. J. [1 ]
Schermer, J. J. [2 ]
Emmelkamp, J. [1 ]
Vlieg, E. [3 ]
Linden, H. [1 ]
Theelen, M. [1 ]
机构
[1] TNO Solliance, Solar Technol & Applicat, Eindhoven, Netherlands
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Appl Mat Sci, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Inst Mol & Mat, Solid State Chem, Nijmegen, Netherlands
关键词
SOLAR-CELLS; ABSORBER; FABRICATION; GALLIUM; INDIUM; FILMS;
D O I
10.1016/j.tsf.2022.139399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study by in-situ X-ray diffraction (XRD) in a unique, custom-made furnace mimicking an industrial setup, the effect of pre-annealing on electroplated and sputtered thin films of Cu-In-Ga, as precursor material for Cu(In,Ga)(S,Se)(2) (CIGS)-based solar cells. In the first part of the paper, the properties of the as-deposited precursors are investigated. We propose a mechanism to explain how indium, despite being deposited before gallium, systematically ends up on top of the stack. The shelf time at room temperature is also shown to strongly affect the metallic phases present in the precursor, unlike sputtered precursors where only minor changes can be observed. These results are then used as input for the second part of the paper. In the second part, pre-annealing experiments up to 550 ? are carried out on the electroplated and sputtered precursors at atmospheric pressure in an inert N-2 atmosphere and analysed by in-situ XRD. We find that above the decomposition temperature of Cu11In9 (310 ?) and below around 520 ?, mainly Cu-9(In,Ga)(4) is left in all precursors, regardless of the phases initially present at room temperature or whether the samples were electroplated or sputtered. We validate these findings for a fast heating ramp to 350 ?, followed by a dwell, as is commonly applied in many CIGS fabrication processes. The implications of these results to high quality CIGS manufacturing are then discussed.
引用
收藏
页数:10
相关论文
共 34 条
[1]   In-situ XRD study on the selenisation parameters driving Ga/In interdiffusion in Cu(In,Ga)Se2 in a versatile, industrially-relevant selenisation furnace [J].
Aninat, R. ;
van den Bruele, F. J. ;
Schermer, J. J. ;
Tinnemans, P. ;
Emmelkamp, J. ;
Vlieg, E. ;
van der Vleuten, M. ;
Linden, H. ;
Theelen, M. .
SOLAR ENERGY, 2021, 230 :1085-1094
[2]  
Backer J.-.P., 2018, IN SITU INVESTIGATIO
[3]   Lateral phase separation in Cu-In-Ga precursor and Cu(In,Ga)Se2 absorber thin films [J].
Baecker, Jan-Peter ;
Schmidt, Sebastian S. ;
Rodriguez-Alvarez, Humberto ;
Wolf, Christian ;
Kaufmann, Christian A. ;
Hartig, Manuel ;
Mainz, Roland ;
Schlatmann, Rutger .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 162 :120-126
[4]   Bandgap Fluctuations Observed by EL in Various Cu(In,Ga)(Se,S)2 PV Modules [J].
Bokalic, Matevz ;
Gerber, Andreas ;
Pieters, Bart E. ;
Rau, Uwe ;
Topic, Marko .
IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (01) :272-277
[5]   Formation of CuInSe2 by the annealing of stacked elemental layers -: analysis by in situ high-energy powder diffraction [J].
Brummer, A ;
Honkimäki, V ;
Berwian, P ;
Probst, V ;
Palm, J ;
Hock, R .
THIN SOLID FILMS, 2003, 437 (1-2) :297-307
[6]   GRADED BAND-GAP CU(IN,GA)SE2 THIN-FILM SOLAR-CELL ABSORBER WITH ENHANCED OPEN-CIRCUIT VOLTAGE [J].
CONTRERAS, M ;
TUTTLE, J ;
DU, DH ;
QI, Y ;
SWARTZLANDER, A ;
TENNANT, A ;
NOUFI, R .
APPLIED PHYSICS LETTERS, 1993, 63 (13) :1824-1826
[7]   Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chloride [J].
Deferm, Clio ;
Malaquias, Joao C. ;
Onghena, Bieke ;
Banerjee, Dipanjan ;
Luyten, Jan ;
Oosterhof, Harald ;
Fransaer, Jan ;
Binnemans, Koen .
GREEN CHEMISTRY, 2019, 21 (06) :1517-1530
[8]   New technologies for CIGS photovoltaics [J].
Delahoy, AE ;
Chen, LF ;
Akhtar, M ;
Sang, BS ;
Guo, SY .
SOLAR ENERGY, 2004, 77 (06) :785-793
[9]   12.4% Efficient Cu(In,Ga)Se2 solar cell prepared from one step electrodeposited Cu-In-Ga oxide precursor layer [J].
Duchatelet, A. ;
Sidali, T. ;
Loones, N. ;
Savidand, G. ;
Chassaing, E. ;
Lincot, D. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 :241-245
[10]  
Green M, 2021, PROG PHOTOVOLTAICS, V29, P3, DOI [10.1002/pip.2728, 10.1002/pip.3371]